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We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding

natural Riemannian metric is also derived, through which AQC can be understood as the problem of

finding a geodesic on the manifold of control parameters. This geometrization of AQC is demonstrated

through two examples, where we show that it leads to improved performance of AQC, and sheds light on

the roles of entanglement and curvature of the control manifold in algorithmic performance.
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Introduction.—Quantum computation is most com-
monly formulated in the language of the ‘‘circuit model’’
[1]. The problem of finding optimal quantum circuits—
which minimize the number of gates used—was recently
addressed in an elegant differential-geometric framework,
wherein the minimum number of elementary gates for
construction of a general n-qubit unitary U can be found
by traversing the geodesic connecting the identity 1 to U
over the SUð2nÞ manifold [2]. This approach is appealing
since it allows for the application of powerful tools and
techniques from variational calculus and differential ge-
ometry [3] to quantum computation. Adiabatic quantum
computation (AQC) [4], on the other hand, is a very differ-
ent approach which has recently attracted much attention
due to its fundamental connection to quantum many-body
systems, in particular, to quantum phase transitions (QPTs)
[5]. The basic strategy of AQC is to solve computational
problems based on adiabatic evolution. A quantum system
is prepared in the ground state of an initial Hamiltonian
Hð0Þ ¼ HI. The system is then adiabatically driven to a
final state, which is close to the ground state of a ‘‘problem
Hamiltonian’’ HðTÞ ¼ HP. This final state corresponds to
the solution of a hard problem, while a short time T
corresponds to an efficient AQC strategy. Although AQC
is equivalent in computational power to the circuit model
[6], it is still relatively unexplored. Specifically, an optimal
strategy for AQC, akin to what has been done for the circuit
model [2], has not yet been formulated.

In this Letter we reformulate AQC as a variational prob-
lem and develop a time-optimal strategy—a ‘‘quantum
adiabatic brachistochrone’’ (QAB)—for quantum algo-
rithms [7]. Specifically, we devise a variational time-
optimal strategy for obtaining an interpolating Hamilton-
ian HðtÞ between HI and HP, which gives rise to the short-
est time T while guaranteeing that the actual final state (the
solution to the corresponding Schrödinger equation), is
close to the desired final ground state. We go further and
show that the QAB can be recast in a natural differential-
geometric framework. We provide two examples which
illustrate the advantage of this optimal approach.

Time-optimal AQC.—The adiabatic approximation,
which underlies AQC, is often stated as follows [8].
Consider a system subjected to a time-dependent
Hamiltonian HðtÞ, with a nondegenerate ground state
j�0ðtÞi isolated by a nonvanishing gap �ðtÞ from the first
excited state j�1ðtÞi. Let DðtÞ � jh�1ðtÞj@tHðtÞj�0ðtÞij.
Prepare the system in jc ð0Þi ¼ j�0ð0Þi and let it evolve
according to the Schrödinger equation into the state
jc ðTÞi. Then, provided the time variation of the
Hamiltonian is sufficiently slow, or T is sufficiently large,
in that maxt2½0;T�DðtÞ=mint2½0;T��2ðtÞ � �, the fidelity

FðTÞ � jh�0ðTÞjc ðTÞij between the final ground state

and the actual final state is high: F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
. However,

it is well known that the latter condition is not always
accurate [9], as recently verified experimentally [10].
Rigorous versions of the adiabatic approximation [11]
typically involve k@tHk2=�3 (with the norm being the
maximum eigenvalue), or terms with different powers of
k@tHk and �. As our approach is to use the adiabatic
condition as a heuristic for finding optimal trajectories,
the exact form of the adiabatic condition is in fact not
essential: we shall judge success by the tradeoff between
fidelity F and evolution time T. As we show below, this
pragmatic approach also allows us to find time-optimal and
geometric formulations of AQC.
The time dependence of Hamiltonians usually comes

from a set of control parameters xðtÞ ¼
ðx1ðtÞ; . . . ; xMðtÞÞT—e.g., electric or magnetic fields, laser
beams, or any other experimental ‘‘knob’’—varying over a
parameter manifoldM, whenceH ¼ H½xðtÞ�. Varying the
Hamiltonian for a given interval t 2 ½t0; t1� then translates
geometrically into moving along a control curve (or path)
xðtÞ in M. We can reparametrize M via a dimensionless
‘‘natural parameter’’ sðtÞ [3], with sð0Þ ¼ 0 and sðTÞ ¼ 1
(e.g., the normalized length), where vðtÞ � ds=dt > 0
characterizes the speed by which we move along x½sðtÞ� 2
M. To make the adiabatic dynamics locally compatible
with the geometric structure of M, we modify the adia-
batic condition into the following local form [12]:
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vðsÞk@sHðsÞk
�2ðsÞ � � 8 s 2 ½0; 1�: (1)

To ensure analyticity and to enable a geometric treatment,
hereafter the norm is the Hilbert-Schmidt (or Frobenius)

norm, defined as kAkHS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½AyA�

p
. From the relation

T ¼ R
1
0 ds=vðsÞ, we define the adiabatic time-functional

T ½xðsÞ�¼
Z 1

0

ds

vad½ _xðsÞ;xðsÞ��
Z 1

0
dsL½ _xðsÞ;xðsÞ�; (2)

where _x � @sx. Inspired by the local condition (1), we
choose the instantaneous ‘‘adiabatic speed’’ via the ansatz

vadðsÞ � ��2ðsÞ=k@sHðsÞkHS ; (3)

and hence—using Einstein summation—the Lagrangian
L½ _xðsÞ;xðsÞ� ¼ k _xi@iH½xðsÞ�kHS=��2½xðsÞ�, where @i �
@=@xi. This ansatz is sensible, in that adiabaticity is hin-
dered when the gap closes, while it is favored when the
variation of the Hamiltonian is slow. To simplify the analy-
sis, from now on, we take the Lagrangian to be L0 ¼ L2;
this corresponds to a reparametrization which leaves the
length of the curve solving the Euler-Lagrange (EL) equa-
tions invariant [2,3].

Our goal is to minimize the time T and thus obtain the
time-optimal curve, or set of time-dependent controls. This
optimal curve is the QAB. From variational calculus, the
optimal path xQABðsÞ should satisfy �T ½xðsÞ�=�xðsÞ ¼ 0,
which gives rise to the EL equations d@ _xL0½ _x;x�=ds ¼
@xL0½ _x;x�.

Some remarks regarding the QAB are in order.
(i) The total real evolution time T (for a given fidelity F)
is not necessarily the same asT . The correct interpretation
is this: after finding the optimal path xQABðsÞ we solve the
Schrödinger equation ivad@sjc i ¼ Hjc i with H and vad

computed along the optimal path, to find jc ½xQABðtÞ�i. The
actual adiabatic error is then �ðTÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FQABðTÞ2

q
,

where FQABðTÞ � jh�0ðTÞjc ½xQABðTÞ�ij, for a given T.
With this interpretation it is safe to take � � 1 in Eq. (3).
Thus, we use T as a guiding principle to obtain optimal
paths; the actual adiabatic time and error should be cal-
culated independently, as per the prescription above.
(ii) Eq. (1) and our corresponding choice of vad are not
unique. They merely represent a convenient ansatz for our
subsequent analysis, and it is quite possible that a better
ansatz involving a different combination of k@sHk and �
exists. For other combinations (k@ksHkm=�l) compatible
with the adiabatic theorem [11], the time-optimal approach
of Eq. (2) still remains applicable. However, this optimi-
zation may not induce a corresponding Riemannian ge-
ometry. (iii) The presence of� inL implies that in order to
apply our method, one needs to either find the gap exactly
(which could be as hard as solving the problem itself), or
restrict the interpolation to forms for which an explicit
functional form for the gap can be obtained (e.g., in exactly
solvable or almost-exactly solvable models), or follow the

scheme suggested to translate a quantum circuit model
computation to an AQC (by which an interpolating
Hamiltonian with an easily calculable gap is derived) [6],
or estimate the gap by means of other methods. (iv) The
bottleneck of adiabatic algorithms is at the finite-size
precursor of QPTs where the gap becomes small (and
vanishes in the thermodynamic limit) [5]. However, due
to the k _xi@iHk factor in the numerator of L, in principle,
there is the possibility that one can (at least partially)
suppress the vanishing gap and associated QPT [13]. The
QAB will inherently seek to identify such criticality-
suppressing control strategies (relative to the specific adia-
batic condition we have adopted here), if they exist.
(v) Modeling AQC usually necessitates a parametriza-
tion of the Hamiltonian. In general, though, this parame-
trization is not unique. For simplicity, consider the pa-
rametrization HðxÞ ¼ P

ix
i�i, where f�igMi¼1 are time-

independent, noncommuting, linearly independent
Hermitian operators, chosen in accordance with the under-
lying structure of the optimization or physical problem in
question. For example, in a multiqubit system, f�ig could
represent (two-) local interactions in the form of the tensor
product of Pauli matrices. It can be shown that in these
‘‘interaction coordinates,’’ the EL equations read:

€x k þ �k
ijðxÞ _xi _xj ¼ 0; (4)

where

�k
ij ¼ 2ðCijC

kl@l�� �k
i @j�� �k

j@i�Þ=�; (5)

Cij � ðCÞij ¼ Tr½�i�j�, and Cij¼ðC�1Þij.
Geometrization of AQC.—Motivated by the existence of

a differential-geometric description for circuit optimiza-
tion [2], and by the resemblance of Eq. (4) to a geodesic
equation [3], we reformulate QAB in a Riemannian geo-
metric language, showing that the problem of finding the
QAB can be viewed as belonging to geometric control
theory [14]. The transition from the EL equations to a
geodesic equation is possible when one can write
L0½ _x;x� ¼ gijðxÞ _xi _xj, where g (with matrix elements gij)

is a differentiable and invertible matrix [3]. From the
definition of L for the QAB, we then obtain

gijðxÞ ¼ Tr½@iHðxÞ@jHðxÞ�=�4ðxÞ; (6)

which is the sought-after metric tensor. In interaction
coordinates, for example, gðxÞ ¼ C=�4ðxÞ.
In this framework, then, the QAB is equivalent to the

geodesic over (M, g), and Eq. (4) is the geodesic equation,
in which �k

ij ¼ 1
2g

klð@jgli þ @iglj � @lgijÞ are the connec-
tion coefficients [where gij � ðg�1Þij]. Since gij / ��4 (if

the numerator does not contribute a power of �) we find
�� g�1@g���1@�. Using standard expressions [3], one
can calculate the Riemann curvature tensor R from the
connection coefficients and the metric tensor, yielding
R� @2gþ g�2 ���6.
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Examples.—We consider the following two-dimensional
(2D) interpolating Hamiltonian:

Hðx1ðsÞ; x2ðsÞÞ ¼ x1ðsÞP?
a þ x2ðsÞP?

b ; (7)

where P?
a ¼ 1� jaihaj for the normalized vector jai 2

H with dimðH Þ ¼ N (similarly for P?
b ), �0 � hajbi is a

known function of N alone, and x1ð0Þ ¼ x2ð1Þ ¼ 1;
x1ð1Þ ¼ x2ð0Þ ¼ 0. It is evident that jai (jbi) is the ground
state at s ¼ 0 (s ¼ 1). We can always find ja?i such that
jbi ¼ �0jai þ �1ja?i, where haja?i ¼ 0, and �1 ¼
ha?jbi. Completing fjai; ja?ig to a basis for H we can
easily diagonalize the Hamiltonian (7). While the general
2D problem requires a numerical solution, we find that if
we impose a one-dimensional (1D) constraint, i.e., xðsÞ �
x2ðsÞ ¼ 1� x1ðsÞ, then an analytical solution is possible:

xQABðsÞ¼1

2
� j�0j
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�j�0j2

p tan½ð1�2sÞarccosj�0j�: (8)

We now consider two illustrative problems which are
special cases of the Hamiltonian (7).

Quantum search.—As a first illustration we revisit
Grover’s unstructured search problem, which involves
finding a marked object among N objects by repeated
oracle queries [1,15]. Grover’s quantum circuit model

solution uses Oð ffiffiffiffi
N

p Þ queries, which is provably optimal,
and a quadratic improvement over the best possible clas-
sical strategy. This problem was successfully recast in the
AQC setting by Roland and Cerf (RC) [12], who consid-
ered the 1D version of (7) with xðsÞ � x2ðsÞ ¼ 1� x1ðsÞ,
jai ¼ P

N�1
k¼0 jki= ffiffiffiffi

N
p

(equal superposition), jbi ¼ jmi, and
the fixed index m 2 f0; . . . ; N � 1g being the ‘‘marked

item.’’ Thus �0 ¼ 1=
ffiffiffiffi
N

p
, with N ¼ 2n the dimension of

the Hilbert space of n qubits. It turns out that the optimal
1D solution (8) coincides precisely with the solution found

by RC, who proved its optimality [in the sense of Oð ffiffiffiffi
N

p Þ
scaling for a fixed error] without the use of variational
optimization. We now extend the analysis by considering
2D and 4D parametrizations, which corresponds to finding
optimal curves on 2D and 4D manifolds, respectively. The
2D case is given by Eq. (7) and the discussion that follows
it, with jai and jbi as above. In the 4D case, we first
consider a general 2� 2 Hamiltonian HðfxigÞ ¼ 1ffiffi

2
p ðx11þ

x2�x þ x3�y þ x4�zÞ, and solve the corresponding geode-
sic (or QAB) differential equations. Next we recall that
Grover’s search is effectively a 2D problem (in the
fjai; jmig basis). This enables us to use the 4D setting for
finding a Groverian geodesic path, with the proper bound-

ary conditions corresponding to jai ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � 1Þ=Np j0i þ
1=

ffiffiffiffi
N

p j1i and, for example, jmi ¼ j1i. It appears, from
the solutions of the EL equations, that the path for
these boundary conditions is effectively 2D. However, it
still offers a relative advantage even over the 2D path of
Eq. (7)—Fig. 1 (middle).
The 1D RC analysis employed the local adiabatic con-

dition (1) to recover the optimal scaling Topt /
ffiffiffiffi
N

p
, for

N � 1. This might suggest that there is no room for further
improvement, but we recall that in the AQC setting the
fidelity is 1 only in the limit T ! 1. Thus we compare the
error �ðTÞ for the RC interpolation to the error obtained
from the optimal 2D interpolation. The result for n ¼ 6
qubits is shown in Fig. 1 (left); results for other values of n
are qualitatively similar, though the advantage of the opti-
mal interpolation shrinks as n grows. The optimal 2D
interpolation results in a smaller error for most values of
T, a tendency that increases as T grows. Conversely, for
most values of the error � the 2D QAB requires a smaller
time T than the RC curve. The middle panel shows the
further improvement resulting from the 4D interpolation.
These results provide a rather striking demonstration of the
power of our formalism, as due to its highly optimized
nature, the Grover example is one where hardly any im-
provement was to be expected.
Figure 1 (right) depicts the RC and 2D optimal curves

over the curvature R1212 surface. Clearly, the optimal curve
follows a path of lower curvature. This is confirmed in
Fig. 2 (left), for different values of n. In spite of its
improved performance, there is less entanglement along
the 2D optimal path than along the RC path [Fig. 2 (right)],
so that more entanglement does not always translate into
higher algorithmic efficiency. We have verified (not
shown) that the same picture emerges in terms of the
entanglement entropy (or block entanglement) [16]. The
explanation for this lower entanglement along the QAB is
that it has a larger instantaneous gap than the RC path
[Fig. 2 (right)]. Indeed, it has been shown that for Grover’s
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FIG. 1 (color online). Left: Final-time error �ðTÞ for the RC and 2D geodesic paths for the Grover search problem, for n ¼ 6 qubits.
Squares (cyan) indicate where the 2D geodesic path outperforms the RC path (�geodesic 	 �RC); circles (red) correspond to the opposite

case. Oscillations are due to �ðTÞ itself being highly oscillatory, with an envelope / 1=T. Middle: �ðTÞ for the 2D and 4D geodesic
paths, for n ¼ 1. Cyan squares (red circles) indicate where the 4D (2D) geodesic path results in a smaller error. Right: Component
R1212ðx1; x2Þ of the curvature tensor for n ¼ 3. The curves on the curvature surface show the critical line (vanishing gap as n ! 1), the
RC interpolation, and the 2D geodesic (QAB). Here R1212 is the only independent component of the curvature tensor.
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algorithm the entanglement entropy is small away from the
finite-size precursor of the first-order QPT, but peaks near
the critical point [5], and we have verified the same for the
2D QAB. Finally, the reason that QAB follows a path with
larger gap is that this is consistent with higher adiabaticity.
By our previous scaling result R���6, it is also consis-
tent with lower curvature.

Linear equations.—Solving linear equations of the type
Ay ¼ a, where A is a given (Hermitian) N � N matrix and
a is a given vector, is a common problem. Recently a
quantum algorithm was proposed in the circuit model
that can obtain y for well-conditioned, sparse matrices in
a time scaling as polylogðNÞ [17]. Here we consider the
problem of finding y ¼ A�1a as one of oracular adiabatic
state generation [18]. To do so we let jbi ¼
A�1jai=kA�1jaik. The formulation given above for the
Hamiltonian (7) then applies. For concreteness we let

jai ¼ ð1; . . . ; 1ÞT= ffiffiffiffi
N

p
and take A to be an N � N

Toeplitz matrix whose first row and column are successive
natural numbers, starting from 1. Toeplitz matrices have
important applications in signal processing, and are not

sparse. We then find numerically that �0 ¼
ffiffiffiffiffiffiffiffiffi
2=N

p
and

hence can deduce immediately—by analogy to the

Grover case, where �0 ¼
ffiffiffiffiffiffiffiffiffi
1=N

p
—that the optimal 1D

interpolation will give rise to a run-time T scaling as

Oð ffiffiffiffi
N

p Þ for a fixed error. Moreover, 2D and 4D interpola-
tions will further improve the error at fixed run time. It is
interesting to note that the most efficient known classical
algorithm for inverting an N � N Toeplitz matrix requires
OðNlog2NÞ steps [19], though a direct comparison is not
possible due to our oracular setting.

Conclusion and outlook.—We have presented a time-
optimal, differential-geometric framework for AQC, and
discussed its implications for the optimal design of adia-
batic algorithms. The power of this new framework was
illustrated via an example showing how the performance of
an adiabatic algorithm can be improved by increasing the
dimension of the control parameter space, and how geo-

metrization sheds light on the role of entanglement and
control manifold curvature in this enhanced performance.
The method presented here is general and can in principle
be used to optimize any adiabatic quantum algorithm for
which the gap (or estimate thereof) is known. An important
next step is to incorporate decoherence-mitigation strat-
egies [20].
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