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We introduce high-order dynamical decoupling strategies for open-system adiabatic quantum computation.
Our numerical results for the random-unitary map model demonstrate that a judicious choice of high-order
dynamical decoupling method, in conjunction with an encoding which allows computation to proceed alongside
decoupling, can dramatically enhance the fidelity of adiabatic quantum computation in spite of decoherence.
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I. INTRODUCTION

In adiabatic quantum computation (AQC), a problem is
solved by evolving in the ground-state manifold of an adiabatic
Hamiltonian Had(t), with t ∈ [0,T ] [1,2]. The ground state
of the beginning Hamiltonian HB = Had(0) is assumed to
be easily preparable, while the ground state of the problem
Hamiltonian HP = Had(T ) represents the solution to the
computational problem. AQC has been shown to be computa-
tionally equivalent to the standard circuit model of quantum
computation (QC) [3–7] and is being pursued experimentally
using superconducting flux qubits [8] and nuclear magnetic
resonance [9,10]. However, in spite of evidence of intrinsic
robustness [11–16] and proposals to protect AQC against
decoherence [17,18], AQC still lacks a complete theory of
fault-tolerance, unlike the circuit model of QC [19–24]. In
fact, even identifying an acceptable notion of fault-tolerant
AQC (FTAQC) is an open problem [25]. To qualify as AQC,
at least the computation should remain adiabatic. On the other
hand, it seems too restrictive to require the techniques used to
address decoherence and noise to be adiabatic as well. We thus
propose the following characterization of FTAQC: “Given a
closed-system AQC specified by HB and HP , and ε > 0, a fault
tolerant open-system simulation will use adiabatic evolution
between two faulty encoded Hamiltonians H̄B and H̄P derived
from HB and HP , so that the final system-only state of the
simulation is efficiently decodable to a state that is ε close (in
fidelity) to the ground state of HP . In addition, the simulation
may involve any other faulty nonadiabatic error-correction,
suppression, or avoidance operations.”

Our characterization is meant to convey that the com-
putation should be adiabatic, and apart from that the error
correction can be anything. We make no attempt to rigorously
quantify the relation between the “ideal” and “faulty” pairs
HB,HP and H̄B,H̄P , the types of allowed error-correction
operations, or the nature of the decoding step. Instead, we
demonstrate here that it is possible to approach ideal AQC in
an open system, using ideas guided by our characterization
of FTAQC. Specifically, we shall assume that the underlying
computation is indeed adiabatic but encoded into new Hamil-
tonians, and that the protection is nonadiabatic.

Reference [18] introduced an AQC protection method
which fits this FTAQC approach. Protection is carried out

by means of dynamical decoupling (DD) [26–28] (i.e., the
application of strong and frequent pulses to the system),
designed to decouple it from the bath. To ensure the com-
patibility of DD with AQC, all qubits are encoded into a
quantum error-detecting code [29], which allows DD pulses to
be applied that commute with the adiabatic evolution, while at
the same time acting to decouple the system from the bath [30].
Reference [18] relied on first-order DD sequences, resulting in
a tradeoff between fidelity and DD sequence bandwidth, and
conjectured that high-order DD, in particular concatenated DD
(CDD) [31], should alleviate this tradeoff.

Here we demonstrate by using numerical simulations for the
random-unitary map model [32] that, following the strategy of
Ref. [18] but using high-order DD sequences, and in particular
CDD, it is possible to dramatically enhance the fidelity of AQC
in an open-system setting. Our results support the idea that
FTAQC, in the sense characterized above, is indeed attainable
using appropriately chosen DD sequences.

II. ALGORITHMS

We consider two well-known AQC algorithms, which
correspond to first- and second-order quantum phase transi-
tions, respectively, and thus to different challenges for AQC
[15,33,34]. The first is Grover’s algorithm for the identification
of a marked element in an unsorted list of N elements, using
the minimum number of oracle queries [35]. This can be done
in O(

√
N ) queries, which is a quadratic improvement over the

best possible classical algorithm [36]. The adiabatic Grover’s
algorithm [37,38] is defined by the n-qubit Hamiltonian

H G
ad(t) = [1 − f (t)](I − |u〉〈u|) + f (t)(I − |m〉〈m|), (1)

where |u〉 denotes the uniform superposition over all N = 2n

computational basis states, |m〉 is the marked state, and I

is the identity operator. The minimum spectral gap �G
min =

O(1/
√

N ), and the total run time required to reach the ground
state |�G

0 (T )〉 = |m〉 of H G
ad(T ) is T ∼ O(

√
N ), provided the

optimized interpolation function f (t) = 1
2 − 1

2
√

N−1
tan[(1 −

2t/T ) arccos(1/
√

N )] is used [37,38].
The second algorithm is 2-SAT on a ring [1,39], represented

by the transverse-field Ising model with periodic boundary
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conditions:

H 2SAT
ad (t) =

(
1 − t

T

) n∑
j=1

(
I − σx

j

) + t

T

n∑
j=1

1

2

(
I − σ z

j σ z
j+1

)
,

(2)

where σ z
n+1 ≡ σ z

1 (σj is a Pauli matrix acting on qubit j ).
The symmetric ground state of H 2SAT

ad (T ) is |�2SAT
0 (T )〉 =

(|0 · · · 0〉 + |1 · · · 1〉)/√2. The minimum gap �min = O(1/n)
occurs near t = 2T/3; it can be found using the standard
fermionization method [1,40,41].

III. ERROR MODEL

To keep our numerical simulations manageable, we con-
sidered a random-unitary map model, which we generated as
follows: The “faulty Hamiltonian” is

H0(t) = Had(t) + Herr(t), (3)

where the error Hamiltonian comprises interactions between
the qubits and time-dependent stochastic classical fields:

Herr(t) =
∑

μ∈{x,y,z}

n∑
j=1

ε
μ

j (t) σ
μ

j . (4)

Each field ε
μ

j (t) is a stationary zero-mean random Gaussian
process with spectral density S

μν

jk (ω) = δjkδμνS(ω) [42],
where

S(ω) = 1√
2π

∫ ∞

−∞

〈
ε

μ

j (t)εμ

j (t + τ )
〉
eiωτ dτ

=
√

J

2πβ
exp[−(ω/β)2/2],

where 〈·〉 denotes a Gaussian ensemble average and S(ω)
is t independent due to stationarity. The standard deviation
β plays the role of the spectral cutoff (1/β is the bath
correlation time). The correlation function amplitude satisfies
〈εμ

j (t)εμ

j (t + τ )〉 ∝ Jβ, and in our simulations we chose J so
that

√
βJ = �min/30 [43].

Each random realization of Herr(t) generates a random
unitary Uε(t), where ε := {εμ

j } [the solution of the Schrödinger
equation governed by H0(t)] with probability pε . Applying
these unitaries to a fixed initial state ρ0 is equivalent to the
completely positive random-unitary map

∑
ε Aερ0A

†
ε with

Kraus operators Aε := √
pεUε [44]. While this is not the

most general model of decoherence [32], it represents an
interesting and relevant error model (e.g., due to charge noise
in superconducting qubits [45–47]).

IV. DYNAMICAL DECOUPLING

The problem we attempt to solve using DD is to perform
high-fidelity AQC in spite of the presence of Herr. The
decoupling pulses are introduced through an additional time-
dependent control Hamiltonian HC(t), which generates a
unitary pulse propagator UC(t). We consider zero-width pulses
separated by finite intervals [48]. The inclusion of pulse-width
errors is left for a future study focusing on a more complete
picture of fault tolerance; CDD is known to be relatively

robust against such errors [31,49,50]. The Hamiltonian H (t) =
HC(t) + H0(t) generates the complete dynamics of the system
in the presence of DD, represented by the unitary evolution
operator U (t,0). To suppress Herr(t) while preserving Had(t),
we require that each term in Herr(t) anticommute with some
pulse operator comprising HC(t), while [HC(t),Had(t ′)] = 0
∀ t,t ′. Upon satisfying these conditions the time evolution
operator in the HC(t)-interaction picture becomes

Ũ (T ) := U
†
C(T )U (T )

= T e−iT
∫ 1

0 Had(s)ds + O[(‖H̃ ′
err‖T )α+1], (5)

where T denotes time ordering and H̃
′
err is an effective error

Hamiltonian, which can be computed using the Magnus series
[51]. DD becomes effective provided the “noise strength”
‖H̃ ′

err‖T < 1 [49]. The larger the “decoupling order” α, the
closer to ideal is the adiabatic evolution. Previously only the
case α = 1 was analyzed [18].

A. Stabilizer decoupling

To satisfy the noninterference condition [HC(t),Had(t ′)] =
0 we make use of the [[n,n − 2,2]] stabilizer code C, encoding
n − 2 logical qubits (n even) into n physical qubits [18,29,52].
The stabilizer of C is S = {I,X,Y,Z}, where X(Y,Z) =⊗n

j=1 σ
x(y,z)
j . The encoded single-qubit operators are σ̄ x

j =
σx

1 σx
j+1 and σ̄ z

j = σ z
j+1σ

z
n , where j = 1,2, . . . ,n − 2. AQC

over C is implemented by replacing each Pauli matrix in
Had(t) by its encoded version, yielding an encoded adiabatic
Hamiltonian H̄ad(t) which is fully 2 local.

B. Concatenated dynamical decoupling for adiabatic
quantum computation

Consider a unitary decoupling group G = {gk}Gk=1 chosen
to implement first-order decoupling (α = 1). DD effectively
averages out Herr by symmetrizing it over G [27,28]. We
choose G = S and hence G = 4 for the [[n,n − 2,2]] code.
CDD achieves higher-order decoupling by concatenating this
symmetrization, so that each additional level averages out the
remaining leading order. So far, CDD has been defined only for
piecewise constant Hamiltonians [31,49,53]. Adapting CDD
to incorporate the time-dependence of H (t), we have at the
l + 1st level of concatenation

U
(l+1)
CDD (T ) =

G∏
k1=1

gk1P
(l)
k1

g
†
k1

, l � 0. (6)

Starting from m = 2, P
(l)
k1

is calculated recursively from

P
(l)
k1,...,km−1

:=
G∏

km=1

gkm
P

(l−1)
k1,...,km

g
†
km

, l � 1 (7)

with DD-free evolution segments

P
(0)
k1,...,kl

:= U0

(
tl−1 + T

kl

Gl
,tl−1 + T

kl − 1

Gl

)
,

(8)

tl := T

l∑
j=1

kj

Gj
, t0 = 0, l � 1,
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FIG. 1. (Color online) Averaged trace-norm distance D(T ) be-
tween the CDD-protected final state and the desired ground state
as a function of total run time T for Grover’s algorithm, in units
of the inverse minimum gap. Cutoff frequency is β = �min/5.
The ideal (solid black) and faulty (empty squares) evolutions are
included for reference. Inset shows a closeup for large T , using a
log scale for the vertical axis. Performance improves monotonically
with concatenation level l, with the corresponding sequence denoted
CDDl . Error bars are due to averaging over 30 random realizations
of Herr(t).

where the DD-free evolution operator is U0(ta,tb) =
T exp[−i

∫ ta
tb

dtH0(t)]. These definitions ensure that at con-
catenation level l the symmetrization procedure is applied
to DD-free evolution segments of duration τl = T/Gl , using
a total of Gl pulses. For piecewise-constant Hamiltonians it
has been shown that CDD achieves α = lth order decoupling
[49,50,53–55].

C. QDD for adiabatic quantum computation

Another way to achieve high-order decoupling in a multi-
qubit setting is quadratic DD (QDD) [56], which is obtained
by nesting two Uhrig DD [57] (UDD) sequences

U
(M1,M2)
QDD (T ) = U

(M2)
UDD,�2

◦ U
(M1)
UDD,�1

◦ U0(T ), (9)

where U
(M)
UDD,� ◦ U0(T ) = �M+1 ∏M+1

k=1 �U0(δ(M)
k ,δ

(M)
k−1), and

where δ
(M)
k = T sin2[kπ/(2M + 2)] and �1 �= �2 ∈ {X,Z}

are the generators ofS. The number of pulses in each sequence,
or sequence order, is {M1,M2} and dictates the decoupling
order α, requiring only (M1 + 1)(M2 + 1) total pulses for
α � min(M1,M2) [58–60].

V. RESULTS

For each algorithm (Grover, 2-SAT) we used n = 4 physical
qubits to encode two logical qubits in the code C and studied
both CDD- and QDD-protected AQC. In our simulations the
pulse intervals decrease as the total number of pulses increases
with the concatenation or QDD sequence order, for each given
value of the total time T . Starting for both algorithms from the
uniform superposition state as the initial encoded state |ψ(0)〉,
we computed |ψε(T )〉 = UxDD,ε(T ) |ψ(0)〉, where x = C or
Q [Eqs. (6) and (9)] for a given Gaussian noise realization
ε. We assessed performance using the trace-norm distance
Dε(T ) := D[|ψε(T )〉 , |�0(T )〉] = [1 − F 2

ε (T ) ]1/2 [61],
where Fε(T ) = | 〈ψε(T )| �0(T )〉| is the fidelity, to quantify

FIG. 2. (Color online) As in Fig. 1, for the 2-SAT on a ring
problem. The curves for ideal evolution and CDD4 overlap to within
our numerical accuracy up to T = 25/�2SAT

min . Note the minimum at
T ≈ 12�2SAT

min for the faulty evolution, suggesting the existence of
an optimal open-system evolution time. This optimal time increases
with concatenation level, until it disappears in the ideal case and for
CDD4. CDD boosts the deviation by a factor of 10 from D ≈ 0.2 (at
T ≈ 12.5/�2SAT

min ) in the faulty case to D ≈ 0.02 (at T ≈ 34.5/�2SAT
min )

for CDD4.

the difference between the encoded, xDD-protected state
|ψε(T )〉 and the desired encoded final state |�0(T )〉
[i.e., the ground state of H̄ad(T )]. All our plots exhibit
the average distance D(T ) = ∑

ε pεDε(T ), and it is
easily verified that 1 − D(T ) lower bounds the output
fidelity of the random-unitary map with Kraus operators√

pεUxDD,ε(T ) [44]. In the ideal case of noise- and DD-free
evolution, |ψad(t)〉 = T exp[−i

∫ t

0 H̄ad(t ′)dt ′] |ψad(0)〉
[where |ψad(0)〉 = |�0(0)〉], the adiabatic theorem
[62] guarantees D[|ψad(T )〉 , |�0(T )〉] � 1 provided
T � maxs∈{0,1} ‖ d

ds
H̄ad‖b−1/�b

min, s = t/T , b ∈ {1,2,3}
[63–65] (see Appendix A). In our simulations a finite range
of T s was used; as can be seen from Figs. 1–3, D(T )
does indeed tend to zero for the ideal case as T increases,
although not monotonically in the Grover case [66]. The
main effect of Herr(t) is to cause D(T ) to diverge away from
zero as T increases, so that there is an optimal evolution
time [67]. The main role of DD protection, then, is to keep
the fidelity of the AQC process as close as possible to
the ideal and, in particular, to prevent minT ∈[0,Tmax] D(T )
from growing larger than some tolerance ε > 0 away from
minT ∈[0,Tmax] D[|ψad(T )〉 , |�0(T )〉]. This is the sense in which
DD-protected AQC approaches the ideal of FTAQC described
in the introduction.

CDD results for Grover’s problem are shown in Fig. 1 for
increasing concatenation levels, at β = �min/5. The faulty
Grover evolution [generated by H̄ G

ad(t) + Herr(t)] reaches a
minimum deviation D(T ) ≈ 0.13 at T ≈ 4.5/�G

min and then
diverges from the ideal evolution [generated by H̄ G

ad(t)]. In
contrast, CDD-protected evolution becomes remarkably close
to the ideal evolution as the level of concatenation increases.
Nearly ideal evolution is maintained essentially over the entire
range of T values we simulated.

Figure 2 shows our CDD results for the 2-SAT problem.
CDD-protected evolution is essentially indistinguishable from
the ideal at sufficiently high concatenation level. The improved
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FIG. 3. (Color online) CDD4 vs QDD15 for the Grover problem
as a function of the normalized bath correlation time 1/(βT ) and
normalized total run time T/�G

min. Increasing the bath correlation
time 1/β at fixed T generally results in improved performance for
CDD4, whose performance is significantly better than QDD15 in in
the large-T regime. All results were averaged over 30 realizations of
Herr(t).

performance in the 2-SAT case, relative to the Grover
case, is consistent with earlier observations that algorithms
associated with second-order quantum phase transitions are
more amenable to AQC than those for first-order transitions
[15,33,34].

Along with CDD, we analyzed QDD-protected AQC for
M1 = M2 = M ∈ {1,3,6,7,14,15}, where the odd sequence
orders correspond to the first four levels of concatenation in
CDDl , l ∈ {1,2,3,4}, respectively, having the same number of
pulses [(M + 1)2 and 4l]. CDD and QDD are compared in our
simulations at equal T values. QDDM performance improves
monotonically for sufficiently large β (not shown), but we
find that QDD15 performance is consistently inferior to that of
CDD4 in the adiabatic regime of large T �min, as can be seen in
Fig. 3. This is surprising in light of the aforementioned fact that
in their non-AQC roles as quantum memory DD sequences,
the respective decoupling orders of CDDl and QDDM are l

and � M . We have confirmed that the results for the 2-SAT
problem are qualitatively similar, again favoring CDD (see
Appendix B for further details).

In Figs. 1 and 2 the cutoff frequency β was fixed.
Performance dependence on β is shown in Fig. 3 and is
seen to be mild for CDD4 at each fixed value of T . The
dependence on β is further elucidated in Fig. 4, which shows
that performance generally improves as β shrinks, as expected.
In contrast, QDD15 results show almost no dependence on
β, and the minτ D(T (τ )) values are approximately twice as
large as those obtained for CDD4 (see Appendix C for further
details). In essence, the superior performance of CDD can be
explained by recognizing that QDD is designed to suppress the
system-bath coupling at the end of the pulse sequence, while
CDD performs this suppression recursively all throughout
the evolution. This is a better fit for AQC, with its time-
dependent system Hamiltonian (see Appendix D for further
details).

VI. CONCLUSION AND FUTURE WORK

We have introduced a high-order DD-based strategy for pro-
tected open-system AQC and demonstrated using numerical
simulations that it is capable of achieving high fidelities for a
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FIG. 4. (Color online) Performance of CDD4-protected evolution
for the 2-SAT problem, as a function of pulse interval τ , for
different values of the frequency cutoff β (τ in units of 1/β to
separate the curves). Total time T = 44τ . The minimum in each
fixed β curve corresponds to an optimal pulse interval τopt(β), and
corresponding Topt(β). Peak performance D(Topt(β)) improves as β is
decreased, except at β = �2SAT

min /0.005 where self-averaging effects
result from rapid fluctuations in ε

μ

j (t) (“motional narrowing”). Results
are averaged over 30 realizations of Herr(t).

random-unitary map model. At sufficiently high concatenation
level, the CDD-based protection strategy achieves fidelities
which are essentially indistinguishable from closed-system
adiabatic evolution for two algorithms associated with first-
and second-order quantum phase transitions. CDD outper-
forms QDD in our simulations; an effect which can be
attributed to CDD’s ability to remove errors throughout the
evolution, as opposed to just at its end. Future work should
elucidate the question of scaling of CDD resources with
problem size, consider finite-width DD pulses, and generalize
the results to more general decoherence models.
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APPENDIX A: ADIABATIC THEOREM

Let s := t/T denote the dimensionless time, pick q ∈ (0,1),
and assume that the total adiabatic evolution time satisfies

T � a

q

(maxs ‖dH/ds‖)b−1

�b
min

. (A1)

Then, according to the adiabatic theorem,

D[|ψ(T )〉 ,|�0(T )〉] � qa. (A2)

The values of the integer exponents a and b in Eqs. (A1)
and (A2) depend upon the differentiability and analyticity
properties of H (t) and the boundary conditions satisfied by
its derivatives [63–65]; typically b ∈ {1,2,3} [63], while a can
be tuned between 1 and arbitrarily large integer values, equal to
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FIG. 5. (Color online) Trace-norm distance between the QDD-
protected final state ρ(T ) and the desired ground state ρM as a
function of total run time T for Grover’s algorithm, in units of the
inverse minimum gap. Specific sequence orders are considered: M =
1,3,4,6,7,14,15. Odd-parity sequence orders contain an number of
pulses equal to those of the CDD sequences shown in Fig. 1 (main
text). In contrast to CDD, QDD-protected evolution does not more
closely resemble closed-system evolution at large T as the number of
pulses grows.

the number of vanishing derivatives of H (t) at the boundaries
t = 0 and t = T [64].

APPENDIX B: QDD PERFORMANCE

In Sec. V we briefly discussed the performance for QDD-
protected AQC for both algorithms: Grover’s search problem
and 2-SAT on a ring. Here, we elaborate on those results and
present some of our numerical results. We consider the case of
equal inner and outer sequence orders, Mj = M , j = 1,2, to
efficiently combat the uniform decoherence model of Eq. (2).
The sequence orders are chosen as M = 1,3,6,7,14,15, where
the odd-parity orders correspond to the first four levels of
concatenation in CDD, l = 1,2,3,4, respectively. The two
contrasting DD schemes are compared with respect to pulse
arrangement (concatenation versus nesting) and interpulse
delay, while total time and the number of pulses are equivalent.

In Fig. 5, the results for QDD-protected Grover are shown
for β = �min/5. Closed-system-like behavior is observed
for M = 1,3,6,7 and M = 14,15 up to T ≈ 4.5/�G

min and
T ≈ 11.5/�G

min, respectively, where the minimum deviation
minT D(T ) generally decreases with increasing sequence
order. QDD does not achieve a higher performance than
CDD for an equivalent number of pulses, as CDD minimum
deviations range from 10% to 15% smaller than QDD values
at equivalent “optimal” values of T . QDD is also distinct
from CDD in its behavior at large T , with respect to the
simulated range, where QDD-protected evolution begins to
diverge from the ideal closed-system evolution as the number
of pulses increases. Although the performance of each scheme,
designated by the minimum deviation, is well characterized in
the small-T regime for Grover, this characteristic of QDD
could ultimately lead to a bound on QDD effectiveness for
algorithms where DD extends ideal-like behavior to larger
values of T .

Interestingly, 2-SAT on a ring is one such case where the
large-T regime is relevant and QDD performance diminishes

FIG. 6. (Color online) Same as in Fig. 5, for the 2-SAT on a ring
problem. QDD protection extends ideal evolution as sequence order
increases, ultimately saturating at M = 14.

at a critical value of sequence order. As with Grover, a
general trend of decreasing minT D(T ), with increasing se-
quence order exists for all M � 14 considered here. However,
the appealing relationship between minimum deviation and
M disappears for 2-SAT at M = 15, where the minimum
deviation is nearly 15% larger than that of M = 14. [See
Fig. 6 for numerical results.] The values of T associated with
the minimum deviation, arg minT D(T ), extend far into the
large-T regime and reach a maximum of T ≈ 35.5/�2SAT

min
for M = 14,15. In the case of CDD at � = 4, the maximum
T value is nearly equivalent ([T ≈ 34.5/�2SAT

min ), yet CDD-
protected evolution does not exhibit a divergence within
the simulated range and obtains a minimum deviation of
approximately half that of M = 14,15. The bound on QDD
performance is indicative of a preference to concatenation
rather than nesting, perhaps most notably for algorithms with
second-order quantum phase transitions, due to the recursive
suppression of the system-bath interaction throughout the
entire evolution provided by the former.

APPENDIX C: DEPENDENCE OF DD PERFORMANCE ON
CUTOFF FREQUENCY

One contributor to the better performance of CDD is the
Gaussian spectral density of the noise process ε

μ

j (s); the
performance of UDD-based schemes is adversely affected if
the spectral cutoff is not sufficiently sharp at high frequencies
[68,69]. Transforming the error Hamiltonian into the toggling
frame and analyzing the resultant DD modulation functions in
the frequency domain, one finds that DD can be interpreted
as a high-pass filter whose cutoff frequency increases as the
interpulse free evolution period decreases [70]. UDD-based
schemes tend to have the flattest filter functions [46,69],
and hence their cutoff frequencies are much smaller than
concatenation-based schemes. Here, we examine the effects
of the spectral cutoff β on QDD and CDD-protected AQC for
both Grover’s search problem and 2-SAT on a ring.

First, let us consider the performance of CDD and QDD
as a function of the total adiabatic run time T and normalized
correlation time (βT )−1. We focus on the sequences which
exhibit the smallest minimum deviation between DD-protected
and ideal evolution for both schemes: CDD4 and QDD15
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FIG. 7. (Color online) Performance of CDD4 for Grover’s search
algorithm as a function of the pulse interval τ for various values of the
frequency cutoff β. Short correlation times (β = 200�G

min) demand a
large pulse interval to obtain minimum deviation from ideal evolution.
As β is decreased, reduced minimum deviation is achieved at pulse
intervals much smaller than the correlation time (1/β). Results are
averaged over 30 realizations of Herr.

for Grover and CDD4 and QDD14 for 2-SAT. In Figs. 3
(main text) and 10, the deviation of DD-protected evolution
from ideal AQC evolution is shown for both sequences in
the case of Grover’s search algorithm and for 2-SAT on a
ring, respectively. The normalized correlation time (βT )−1 ∈
[10−3,103] and the total run time is varied from T = 0 to T =
36/�min. We average all results over 30 random realizations
of ε

μ

j (s).
In the case of Grover’s search algorithm, CDD4 dominates

for short correlation times while QDD15 performance increases
substantially at large (βT )−1 and attains minimum deviations
approximately equal to CDD4. CDD4-protected and closed-
system evolution nearly coincide up to T values ranging
from T ≈ 4.5/�G

min at (βT )−1 = 10−3 to T ≈ 16.5/�G
min at

(βT )−1 = 103, where the minimum deviation reduces by about
36% over the entire range of (βT )−1. QDD15 obtains similar
values of T ; however, minimum deviation reduces by about
60% over the range of cutoff frequencies. The distinction
between the DD schemes is most notable in the large-T
regime, where QDD15-protected evolution diverges from the
ideal evolution more dramatically than CDD4 as the spectral
cutoff is reduced. However, this effect is inconsequential
for QDD15 performance since minimum deviation occurs
predominately in the short-T regime. Additional artifacts, such
as self-averaging due to rapid fluctuations of ε

μ

j (s) at short
correlation times (“motional narrowing”) are also present for
both schemes.

The results for the 2-SAT problem differ from Grover’s
algorithm in that CDD4 maintains its superiority over QDD14

for all β. CDD-protected evolution reaches minimum deviation
at T ≈ 28/�2SAT

min and T ≈ 34.5/�2SAT
min for (βT )−1 = 10−3

and (βT )−1 = 103, respectively, where the value of minT D(T )
reduces by 56% over the entire range of (βT )−1 considered.
Similar values of T corresponding to arg minT D(T ) are
also obtained for QDD; however, the dramatic reduction in
minimum deviation with decreasing β is not observed. In fact,
even for the largest normalized correlation time (βT )−1 = 103

QDD14 minimum deviation remains approximately 50% larger
than CDD4. As discussed in Sec. B, increasing the sequence
orders of QDD does not appear to be beneficial for the 2-SAT
problem due to the divergent behavior of QDD-protected

FIG. 8. (Color online) As in Fig. 7, for QDD15. The pulse
interval τ represents the minimum delay between pulses for QDD.
In contrast to CDD4, minimum deviation between DD-protected and
ideal evolution does not increase with correlation time for QDD. Note
also that the minimum deviations are approximately twice as large
as those obtained for CDD and require a minimum pulse interval 10
times smaller.

evolution from the ideal case at large T . Here, we show that
similar results are found for a wide range of cutoff frequencies.
We suspect that similar results would be obtained for any
algorithm where DD-protection extends ideal-like behavior to
large-T values.

The expectation of spectral cutoff-dependent variations in
DD performance is clearly evident for both Grover’s algorithm
and 2-SAT. The minimum deviations for CDD4 and QDD15

decrease with increasing correlation time for the Grover
case, with QDD15 obtaining the more significant reductions
over the range of β considered. Closed-system-like evolution
is observed for extended time durations, dependent upon
correlation time, in the case of 2-SAT for both CDD4 and
QDD14, with CDD4 maintaining the more favorable minimum
deviations. The attributes of DD-protected AQC appear to be
dependent upon the order of the quantum phase transition;
however it is necessary to consider additional algorithms
to truly validate this observation. Whether or not such a
conclusion can be drawn, the algorithm-dependent variations
in DD performance are still quite intriguing, and perhaps
unexpected, results.

As an additional analysis, we consider DD performance
with respect to the minimum delay between successive pulses
τ for various values the spectral cutoff β. The minimum
pulse delay is a canonical parameter that represents a physical
constraint in standard DD studies, where the primary objective
is to apply the control pulses such that βτ � 1 in order to
generate the desired effective averaging of Herr to some order
in τ (or T ) [26,31,49,53,56]. This condition on τ presents
a contradictory situation for AQC, where extended total
evolution time is demanded to obtain higher computational
accuracy. Although previous work has addressed this issue for
the case of periodic DD (PDD), a general understanding of the
relationship between τ and β for AQC evolution is still lacking
for more sophisticated DD schemes. By varying the spectral
cutoff, we seek to gain insight into the connection between β

and the value of τ where minimum deviation between DD-
protected and ideal evolution occurs, τopt = arg minτ D(τ ),
specifically for CDD and QDD.

First, consider Grover’s search problem for CDD4 and
QDD14 as a function of τ shown in Figs. 7 and 8, respectively.
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FIG. 9. (Color online) As in Fig. 4 (main text), for QDD14. Here,
the pulse interval τ represents the minimum delay between pulses.
Minimum deviations from ideal evolution are approximately twice
as large as those obtained for CDD4. Peak performance appears
insensitive to the value of β.

CDD4-protected evolution clearly exhibits a direct relationship
between the minimum deviation from ideal evolution and
β, generally reducing as the spectral cutoff reduces. Large
spectral cutoffs (β = 200�G

min) require a relatively large pulse
delay, τopt ≈ 10/β, to generate an evolution long enough
to reach minimum deviation. Consequently, the βτ � 1
condition is violated and DD-protected evolution deviates
more significantly from ideal evolution, D ≈ 0.02 at the
lowest point. Short spectral cutoffs (β = 0.02�G

min) result
in a τopt approximately 1000 times smaller than 1/β and a
considerable reduction in the minimum deviation, D ≈ 0.005.
The β dependence of QDD15 is clearly noticeable when
transitioning into βτ � 1, yet the reduction in minimum
deviation is unsubstantial thereafter. Peak performance occurs
for β = 0.02�G

min, where τopt is about 105 times smaller than
1/β. In general, minimum deviation is reached at minimum
pulse intervals of approximately 10 times smaller than those
obtained for CDD4.

The results are qualitatively equivalent for the 2-SAT prob-
lem, as displayed in Figs. 4 (main text) and 9, for CDD4 and
QDD14, respectively. The minimum deviation and τopt decrease
with decreasing spectral cutoff for CDD4, while appreciable
changes in the minimum D are not observed for QDD14.
Again, large spectral cutoffs require minimum pulse intervals
that are longer than 1/β (τopt ≈ 10/β for β = 200�2SAT

min ) to
acquire the total time necessary to reach minimum deviation.
Self-averaging effects are more noticeable for 2-SAT and
contribute to the improvement in CDD4 performance seen
in Fig. 4 (main text) for β = 200�2SAT

min since βτopt > 1. In
contrast to the Grover case, the values of τopt are comparable
for both sequences, which is consistent with the extended ideal-
like AQC evolution observed for increasing correlation time
in Fig. 10. Furthermore, a distinction can be made between
Grover and 2-SAT with respect to their susceptibility to
variations in β. CDD4-protected AQC significantly improves
with increasing correlation time for 2-SAT, whereas the
performance variations are less dramatic for the Grover case.

APPENDIX D: EFFECT OF Had(s)-INDUCED NOISE

An additional contributor to the favorable performance of
CDD is the scheme’s effectiveness in suppressing decoherence

FIG. 10. (Color online) Comparison between CDD4 and QDD14

performance for 2-SAT on a ring as a function of the normalized
correlation time (βT )−1 and total run time T . As in Fig. 3 (main text),
sequence performance is nearly the same for short correlation times.
Increases in correlation time result in smaller deviations between
DD-protected and ideal evolution for both schemes.

associated indirectly with the time-dependent interpolation
function f (s). Although Had(s) is, of course, by design not
an error-generating term, at second order in the Magnus
expansion it couples to Herr via a double commutator of the
form [[Had(s),Herr],HC(s)]. Focusing on the case where the
error model is time independent, ε

μ

j (s) ≡ ε, we analyze
the interplay between DD and f (s) for Grover’s problem,
where the interpolation function is nonlinear.

In Figs. 11 and 12, we show the performance of CDD and
QDD-protected AQC, respectively, for ε = 10−2. The faulty
evolution only coincides with the ideal case up to T ≈ 4/�G

min,
thereafter diverging rapidly. Protecting AQC by CDD does
not appear to be beneficial until � = 4, where CDD4-protected
evolution closely coincides with ideal evolution throughout the
simulated range of T . The results for QDD-protected AQC are
quite different in that increasing the number of pulses does not
necessarily prolong ideal evolution, nor reduce the minimum
deviation. Significant deviations from ideal evolution are
observed for all M �= 15 when T � 25/�G

min, while M = 6
appears to be optimal for T � 25/�G

min. Interestingly, the
evolution generated by M = 15 produces the longest closed-
system-like evolution and the most considerable divergence
from the ideal case.

The fact that the optimal interpolation function for Grover’s
search is a nonlinear function most likely dictates the bias
in DD scheme. The function f (s) essentially plays the role
of a time-dependent noise process that increases rapidly
throughout the AQC evolution, except near the minimum
energy gap. As with the time-dependent ε

μ

j (t) functions, CDD
is better equipped to deal with f (s)-induced decoherence
due to the recursive error suppression provided by each
sublevel of concatenation. In contrast, UDD protocols do not
complete the error averaging process until the last pulse is
applied: not all error channels are addressed by each nested
sequence. The procedure appears to be most detrimental for
increasing sequence orders at relatively large values of T ,
which implies that the nonlinearity of f (s) is generating
effective Hamiltonians at each nested sublevel that cannot be
averaged out completely. This result is quite similar to the
spectral cutoff analysis shown in Fig. 8 for QDD15, where
minimum deviation grew considerably for short correlation
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FIG. 11. (Color online) Performance of CDD for a constant error
Hamiltonian [εμ

j (s) ≡ 10−2 ∀ μ,j in Eq. (2) (main text)]. The curves
for ideal evolution, faulty evolution, and CDD4 overlap up to T ≈
4/�G

min, after which CDD4 continues to track the ideal evolution
essentially perfectly throughout the simulated range.

times, most notably at β = 20�G
min, due to rapid fluctuations

in ε
μ

j (s) that lead to additional unsuppressed decoherence at
the end of the QDD evolution.

FIG. 12. (Color online) As in Fig. 11, for QDD with M =
{1,3,4,6,7,14,15}. QDD-protected evolution deviates minimally
from ideal evolution for M = 15 up to T ≈ 25/�G

min, thereafter
M = 6,7 are the optimal sequence orders. Unlike the CDD case,
increasing the number of pulses does not result in closed-system-like
behavior over the entire range of T considered. M = 14,15 evolution
closely coincides with ideal evolution more so than any other M

values; however it also diverges faster than all order sequence orders
at critical T values.

[1] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser,
arXiv:quant-ph/0001106.

[2] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and
D. Preda, Science 292, 472 (2001).

[3] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and
O. Regev, SIAM J. Comp. 37, 166 (2007).

[4] J. Kempe, A. Kitaev, and O. Regev, SIAM J. Comput. 35, 1070
(2006).

[5] M. S. Siu, Phys. Rev. A 71, 062314 (2005).
[6] R. Oliveira and B. Terhal, Quantum Inf. Comput. 8, 0900 (2005).
[7] A. Mizel, D. A. Lidar, and M. Mitchell, Phys. Rev. Lett. 99,

070502 (2007).
[8] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting,

F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson,
P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi,
E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich,
M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin,
J. Wang, B. Wilson, and G. Rose, Nature (London) 473, 194
(2011).

[9] M. Steffen, W. van Dam, T. Hogg, G. Breyta, and I. Chuang,
Phys. Rev. Lett. 90, 067903 (2003).

[10] X. Peng, Z. Liao, N. Xu, G. Qin, X. Zhou, D. Suter, and J. Du,
Phys. Rev. Lett. 101, 220405 (2008).

[11] A. M. Childs, E. Farhi, and J. Preskill, Phys. Rev. A 65, 012322
(2001).

[12] M. S. Sarandy and D. A. Lidar, Phys. Rev. Lett. 95, 250503
(2005).

[13] J. Roland and N. J. Cerf, Phys. Rev. A 71, 032330 (2005).
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