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We analyze numerically the performance of the near-optimal quadratic dynamical decoupling (QDD) single-
qubit decoherence errors suppression method [J. West et al., Phys. Rev. Lett. 104, 130501 (2010)]. The QDD
sequence is formed by nesting two optimal Uhrig dynamical decoupling sequences for two orthogonal axes,
comprising N1 and N2 pulses, respectively. Varying these numbers, we study the decoherence suppression
properties of QDD directly by isolating the errors associated with each system basis operator present in the system-
bath interaction Hamiltonian. Each individual error scales with the lowest order of the Dyson series, therefore
immediately yielding the order of decoherence suppression. We show that the error suppression properties of
QDD are dependent upon the parities of N1 and N2, and near-optimal performance is achieved for general
single-qubit interactions when N1 = N2.
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I. INTRODUCTION

In recent years, there have been promising advances toward
the usage of quantum systems to perform quantum information
processing (QIP) [1]. However, for these systems to be utilized
efficiently, it is necessary to preserve and store information
for a sufficient amount of time so that computations can be
implemented. Unfortunately, quantum systems are generally
hindered in their ability to perform such tasks effectively due to
unwanted interactions between the system and its environment,
which result in decoherence [2].

Dynamical decoupling (DD) is a strategy that can be used
to suppress decoherence and effectively remove unwanted
system-environment interactions for a period of time such that
quantum states can be preserved with a low probability of error
[3]. As originally conceived, DD schemes are characterized
by the application of short control pulses to the system
such that the overall time evolution provided by the pulses
selectively averages out system-environment interactions,
thereby suppressing decoherence [4–7]. One advantage of
DD is that it is an open-loop control method, which does not
require any measurements or feedback, unlike quantum error
correction [8]. Nor does DD require any specific knowledge
of the environment other than it being non-Markovian, unlike
optimal control methods designed to suppress decoherence
[9,10].

Early DD schemes were designed to remove unwanted
system-bath interactions to a given, low order in time-
dependent perturbation theory [3]. Concatenated DD (CDD)
was the first explicit scheme capable of removing such
interactions to an arbitrary order [11]. CDD accomplishes
this via a recursive construction in which each successive
level removes another order in time-dependent perturbation
theory. The advantages of CDD over standard periodic pulse
sequences have been extensively studied analytically [12,13]
and numerically [12,14–17], and confirmed in a number of
recent experimental studies [18–22]. However, assuming that

pulse intervals can be made arbitrarily short, the number of
pulses required to achieve arbitrary order suppression grows
exponentially with the order in CDD. When the finiteness
of pulse intervals is accounted for there is an optimal level
of concatenation and correspondingly a highest attainable
perturbation theory order for removal of unwanted interactions
[12,13,19].

In contrast to CDD, Uhrig DD (UDD) is characterized by
the use of unequal pulse intervals, or free evolution periods
[23]. By applying control pulses at

tj = T sin2 jπ

2(N + 1)
, (1)

where j = 1,2, . . . ,N + 1, a UDD sequence of total duration
T yields N th order decoupling for single-axis system-bath
coupling [24]. The number of pulses comprising a UDD
sequence is N if N is even, or N + 1 if N is odd. General-
izations of UDD for generic system-environment interactions
include concatenated UDD (CUDD) [25], quadratic dynam-
ical decoupling (QDD) [26] and nested Uhrig dynamical
decoupling (NUDD) [27] (see also [28]). CUDD removes the
restriction of single-axis decoupling and suppresses general
(three-axis) decoherence errors on a qubit, but still suffers
from the exponential cost of CDD. On the other hand, QDD
also suppresses general decoherence errors on a qubit, but
does so without the exponential cost of CDD by nesting
two UDD sequences for two orthogonal axes. In fact, QDD
is a near-optimal scheme for single-qubit decoupling from
an arbitrary bath, requiring only N2 pulses for N th order
decoupling if N is even, or (N + 1)2 pulses if N is odd. The
NUDD sequence is built on the same nesting idea, but removes
the QDD restriction of single-qubit decoupling. NUDD applies
to arbitrary multilevel systems coupled to arbitrary baths, as
recently proved in Ref. [29].

In this work we focus on the decoherence error suppression
capabilities of QDD. This protocol requires two nested
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sequences each containing Nj pulses if Nj is even or Nj + 1
pulses if Nj is odd, j = 1,2. We call N1 and N2 the inner and
outer sequence order, respectively. While the original QDD
paper [26] noted that sequences with N1 �= N2 are possible
and could be advantageous when a particular axis is dominant,
only the case N1 = N2 was analyzed. Here we numerically
study QDD for N1 �= N2. We provide a complete numerical
elucidation of the performance of QDD as a function of N1

and N2.
Our numerical analysis assumes that the system-bath inter-

action and internal bath Hamiltonian are bounded in operator
norm. This assumption works well for various spin-bath
models of relevance to solid-state quantum computing, such
as electron spin qubits coupled to a nuclear spin bath as found,
for example, in quantum dots [30]. It does not work as well for
oscillator-bath models, where the internal bath Hamiltonian
has divergent operator norm, unless a high-frequency cutoff
is introduced. See, for example, Ref. [13] for a detailed
discussion of this issue.

The structure of this paper is as follows. In Sec. II we
provide a brief synopsis of our results. In Sec. III we summarize
the QDD protocol. In Sec. IV we introduce the relevant error
measures utilized in this paper and provide an analysis of
the expected scaling of these measures with the inner and
outer sequence orders. Section V is devoted to our numerical
results. In it we discuss the scaling of the single-axis errors
and their time dependence, as well as the scaling of a distance
measure for the entire QDD sequence. Section VI presents our
conclusions.

II. SYNOPSIS OF RESULTS

We characterize QDD performance with respect to the order
of error suppression given by the overall fidelity loss of the
qubit (system) state. We show that the order of overall error
suppression is dictated by the lowest of the inner or outer
sequence orders, namely D ∼ (Jτ )min{N1,N2}+1, where D is a
measure of the overall error, J is the strength of the system-bath
coupling, and τ is the smallest pulse interval.

To arrive at these results and gain more insight we first
characterize QDD performance with respect to the order of
error suppression given by the order of error suppression
along each axis of the qubit Bloch sphere, referred to as the
single-axis error. We isolate the single-axis errors by projecting
the total evolution operator into the three directions defined
by the Pauli basis. The error suppression properties are then
distinguished with respect to the scaling of the error as a
function of the minimum pulse interval for various inner and
outer sequence orders. Since this scaling is dominated by the
first nonzero term of the Dyson series, the order of error
suppression for each single-axis error can be characterized
with respect to inner and outer sequence order. Suppression of
the x-axis error (or “X-type error”) is determined by N1, the
y-axis error by the parity of N1 and N2, and the z-axis error
by N2 except in the case when N1 is odd [see Eqs. (35)–(37)].
Our results will show that if N1 is odd, there is a constraint on
the suppression of the z-axis error depending on the value of
N1 with respect to N2.

Parity effects were anticipated in Ref. [27], where the
expected performance of QDD was proved for sequences with

even N1 (the proof was recently completed in Refs. [29,36]).
We show that parity effects are absent in QDD only for
the interaction that anticommutes solely with the decoupling
operator comprising the inner sequence. This interaction (σx)
is suppressed with UDD efficiency (i.e., N1th order error
suppression for a pulse sequence comprising N1 pulses).
This result holds for the outer sequence as well (i.e., the σ z

interaction) except in the case of N2 � 2(N1 + 1) with N1

odd, where the inner sequence hinders the ability of the outer
sequence to suppress decoherence to the expected order. We
find that in general, UDD efficiency for general single-qubit
errors is achieved when N1 and N2 are both even.

We introduce another perspective on the QDD sequence, by
studying the time dependence of the single-axis errors. We find
that as the sequence progresses, these errors oscillate between
values that are near to their final minimum, and much higher
values.

III. QDD PROTOCOL

UDD suppresses single-qubit dephasing or longitudinal
relaxation errors separately, for a general environment [31,32].
The extension of UDD to QDD improves on this by handling
general single-qubit decoherence, in particular both dephasing
and relaxation simultaneously. Therefore, in our analysis of
QDD the time-independent Hamiltonian,

H = HB + HSB, (2)

HB = I ⊗ BI , (3)

HSB = σx ⊗ Bx + σy ⊗ By + σ z ⊗ Bz, (4)

is employed to describe general system-environment interac-
tions for the single-qubit system. The system operators σμ

are the standard Pauli matrices, while the bounded operators,
Bμ, μ ∈ {I,x,y,z}, characterize a generic environment. The
operator BI encompasses the pure bath dynamics, so that HB

is the “pure-bath” Hamiltonian, while HSB is the system-bath
interaction Hamiltonian.

In building a QDD sequence to compensate for the
interactions present in the above Hamiltonian, it is useful
to first choose a so-called mutually orthogonal operator set
(MOOS) [27]. This set comprises mutually anticommuting
or commuting operators needed to perform DD in the general
NUDD scheme. Each of these operators is required to anticom-
mute with some portion of the interaction Hamiltonian. The
anticommutation condition between an element of the MOOS
and the interaction Hamiltonian is essential for decoherence
suppression. One might expect a UDD sequence composed
of an element of the MOOS to suppress the corresponding
anticommuting interaction with UDD efficiency. As we shall
show, this is not the case, except for the inner sequence.

In the case of a single-qubit system, NUDD reduces to QDD
and the MOOS requires only two operators. There is some
flexibility in choosing the MOOS for Eq. (2), but without loss
of generality we pick � = {X,Z}. The operators X = σx ⊗ IB

and Z = σ z ⊗ IB (we drop global phase factors everywhere)
represent ideal zero-width π rotations about their respective
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axes of the qubit subspace, and do not affect the bath. The
QDD sequence is now readily constructed as [26]

U
(N1,N2)
� = XN2Z(N1)

(
sN2+1τ

) · · · XZ(N1)(s1τ ), (5)

where

Z(N1)(τ ) = ZN1U
(
sN1+1τ

) · · ·ZU (s2τ )ZU (s1τ ). (6)

Note that the order of nesting (Z into X or X into Z) is
immaterial for our purposes. The free evolution dynamics
between successive pulses, U (t) = e−iH t , is governed by
Eq. (2), and the free evolution time durations are given in
terms of the normalized UDD intervals,

sj = tj − tj−1

t1 − t0
, (7)

with tj specified by Eq. (1), and τ = t1 − t0. The high
efficiency of UDD in suppressing decoherence, and therefore
QDD, arises from the choice of the relative free evolution time
durations {sj }.

The total normalized time of an N -pulse UDD sequence is
given by

S(N) ≡
N+1∑
j=1

sj = tN+1

t1
= csc2

(
π

2N + 2

)
, (8)

so that the total physical time is

T (N) = S(N)τ. (9)

Therefore the total normalized time of a QDD sequence
with N1 inner and N2 outer pulses is given by

S(N1,N2) ≡
N2+1∑
j=1

sjS
(N1)

= csc2

(
π

2N1 + 2

)
csc2

(
π

2N2 + 2

)
, (10)

so that the total physical time is T (N1,N2) = S(N1,N2)τ .

IV. QDD PERFORMANCE MEASURES

A. QDD analysis

Our goal here is to understand the properties of QDD error
suppression for general N1 and N2 and for a wide range of
parameters. We do so by isolating the errors proportional to
each system basis operator, σμ, μ = {x,y,z} (i.e., the single-
axis errors). In this manner the order of error suppression
can be extracted directly and possible constraints on QDD
effectiveness can be accurately identified. Each single-axis
error is obtained from the evolution operator, U

(N2,N1)
� , by

projecting along the particular axis of interest and performing
a partial trace over the system. The order of error suppression
can then be quantified by the scaling of the single-axis error
as a function of either the total evolution time or the minimum
pulse interval. We choose the minimum pulse interval since
experimentally this quantity is always lower bounded, and
plays an important role in the ultimate performance limits of
UDD [32] and DD in general [33].

The resulting QDD evolution operator, U
(N2,N1)
� , contains

all the information regarding decoherence suppression for each

single-axis error. Construction of the final evolution operator
is accomplished by first considering the inner sequence
evolution, Z(N1)(τ ). Let Eq. (2) be partitioned such that
H = H+ + H−, where

H+ = σx ⊗ Bx + σy ⊗ By (11)

and

H− = I ⊗ BI + σ z ⊗ Bz. (12)

Clearly, the element of the MOOS comprising Z(N1)(τ )
anticommutes with H+ and commutes with H−, that is,
[H±,Z]± = 0, where the plus and minus sign subscripts
signify the anticommutator and commutator, respectively.

The Z-type UDD sequence Z(N1)(τ ) is effective against
the anticommuting Hamiltonian; H+. Z(N1)(τ ) is completely
ineffective against unwanted interactions within H−. Any
additional errors associated with H− must be addressed using
another member of the MOOS. The inner sequence evolution
can be expanded in terms of H± [24],

Z(N1)(τ ) = e−i[(−1)N1 H++H−]sN1+1τ

· · · e−i[−H++H−]s2τ e−i[H++H−]s1τ , (13)

where the anticommuting and commuting properties of H±,
respectively, have been used. Transforming into the interac-
tion picture with respect to H−, we can write Z(N1)(τ ) =
U

(N1)
− (τ )U (N1)

z (τ ), such that U
(N1)
− (τ ) = e−iH−S(N1)τ and

U (N1)
z (τ ) = T̂ exp

(
− i

∫ S(N1)τ

0
fz(t)H+(t)dt

)
. (14)

The modulation function fz(t) = (−1)j−1 is defined for t ∈
[
∑j−1

�=1 s�τ,
∑j

�=1 s�τ ] and T̂ is the time-ordering operator.
H+ in the rotating frame with respect to H− takes on the form
of a power series expansion in t ,

H+(t) = U
(N1)†
− (t)H+U

(N1)
− (t) =

∞∑
k=0

H
(k)
+ t k. (15)

The power series form of H+(t) is useful (though not essential
[27]) for the proof of UDD and therefore the suppression of
error associated with H+ [31,32,34,35]. All constants of the
expansion are condensed within H

(k)
+ , along with the k-fold

commutator,

[kH−,H+] = [H−,[H−, . . . [H−,H+] . . .]]. (16)

Using time-dependent perturbation theory, U (N1)
z (τ ) is ex-

panded in the Dyson series,

U (N1)
z (τ ) =

∞∑
n=0

∑
kn

H
(kn)
+ · · ·H (k1)

+ F (N1,kn)
z (τ ), (17)

where kn = {k1,...,kn} with ki = 0,1,... for all i, and all of the
time dependence of the expansion has been placed in

F (N1,kn)
z (τ ) = (−i)n

∫ S(N1)τ

0

∫ tn−1

0
· · ·

∫ t2

0

n∏
j=1

dtj fz(tj )t
kj

j .

(18)

The proof of UDD is completed by parametrizing tj as
tj = τ sin2(θj /2), Fourier expanding fz(tj ), and showing that
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F (N1,kn)
z (τ ) = 0 for all odd values of n when n + ∑n

j=1 kj �
N1 [24]. All even orders of the expansion are proportional to
unity or σ z, and are therefore not associated with H+. The
expansion ultimately yields

Z(N1)(τ ) = e−iH ′
−(τ )S(N1)τ+O[(τ‖H ′

+(τ )‖)N1+1], (19)

where H ′
+(τ ) is a generic single-qubit system-bath Hamilto-

nian and

H ′
−(τ ) = I ⊗ B ′

I (τ ) + σ z ⊗ B ′
z(τ ) (20)

is composed of environment operators dependent on the
minimum pulse interval. Note that these environment operators
are not the same operators defined in Eq. (2), but combinations
of the original Hamiltonian operators resulting from the
perturbation expansion.

Left with only dephasing errors, terms proportional to σ z,
the process is continued again by defining H̃+ = σ z ⊗ B ′

z(τ )
and H̃− = B ′

I (τ ) for the outer X-type UDD sequence of
Eq. (5). H̃± is defined in this way such that [H̃±,X]± = 0,
a similar condition to that required for the inner Z-type
sequence. The resulting evolution of Eq. (5) can be summed
up as

U
(N1,N2)
� = I ⊗ B ′′

I (τ ) +
∑

μ∈{x,y,z}
σμ ⊗ B ′′

μ(τ ). (21)

Once again, the time-dependent environment operators, B ′′
μ(τ ),

differ from the previously defined environment operators. Each
B ′′

μ(τ ), μ ∈ {x,y,z}, contains the uncompensated decoherence
along each of the qubit axes. Bounds on the order of error
suppression are derived analytically in Ref. [36].

B. Single-axis errors

One of our goals is to characterize the performance of QDD
with respect to the remaining system-environment interaction
operators, B ′′

ν (τ ). The error is quantified by what we refer to
as the single-axis error Eμ:

Eμ(τ ) = ‖B ′′
μ(τ )‖F , (22)

where

B ′′
μ(τ ) = TrS

(
U

(N1,N2)
� σμ

)
, (23)

and where ‖A‖F is the Frobenius norm of A, that is,

‖A‖F = Tr
√

A†A, (24)

the sum of singular values of A. (The choice of norm is
somewhat arbitrary; we could have used any other unitarily
invariant norm [37].) Thus Eμ(τ ) � 0, and we are interested
in how the single-axis errors scale as a function of the minimum
pulse interval.

C. Distance measure

The advantage of the single-axis error over other measures
such as polarization or fidelity is that these typically scale
with the overall minimum order of decoherence suppression
and therefore do not provide detailed information about the
structure of the unitary evolution operator itself. However,
the single-axis errors of course do not tell the whole story of

QDD performance. A useful overall fidelity-loss measure is
the distance [38]

D(U,G) = 1√
dSdB

min
	

‖U − G ⊗ 	‖F . (25)

Here dS and dB denote the dimensions of the system and
bath Hilbert spaces, respectively, U is the actual system-bath
unitary evolution operator, G is the desired system-only
unitary operator, and 	 is a bath operator. Grace et al. [38]
give an explicit form for this distance measure, so that in
our numerical simulations we do not need to compute the
minimum over 	. In our case G = I is the desired system
unitary operator since the goal of DD is to remove the system-
environment interaction while effectively acting trivially on
the system. The advantage of the distance measure D(U,G)
of Eq. (25) over the standard Uhlman fidelity or trace-norm
distance [39] is that it is state independent and can be correlated
directly with the results obtained for the single-axis errors.

We shall show that D(U,I ) scales in the same manner as
minμ Eμ(τ ). It will also illuminate some interesting features
of QDD based on the inner sequence order not captured by the
single-axis errors.

D. Scaling

We parametrize the strength of the pure environment
dynamics and system-environment interactions, respectively,
as

β = ‖HB‖, J = ‖HSB‖, Jα = ‖Bα‖, (26)

where ‖A‖ is the standard sup-operator norm, namely the
largest singular value (largest eigenvalue of

√
A†A):

‖A‖ = sup
|ψ〉

√
〈ψ |A†A|ψ〉√〈ψ |ψ〉 . (27)

The effectiveness of DD tends to be greater in the regime
where the environment is essentially static and the duration
of the free evolution is much smaller than the environment
correlation time: Jτ 
 1 and β 
 J .

We model the environment as a four-qubit bath with
operators,

Bμ =
∑
i �=j

∑
α,β

c
μ
αβ

(
σα

i ⊗ σ
β

j

)
, (28)

characterizing the dynamics of the bath and system-bath inter-
actions. The operators Bμ are composed of one- and two-body
terms, where i,j index the bath qubits, μ,α,β ∈ {1,x,y,z},
where σ 1 = I is the 2 × 2 identity matrix, and c

μ
αβ ∈ [0,1] are

coefficients chosen uniformly at random. Constructing Bμ in
this manner permits general two- and three-body interactions
between the system and the environment, and also facilitates a
direct comparison with Ref. [26], where the same model was
used.

The single-axis error Eμ(τ ) will be dominated by the lowest
nonvanishing order of τ , which we denote by nμ. That is,
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FIG. 1. (Color online) Single-axis errors after one cycle of
U

(N1,N2)
� for outer sequence order N2 = 3 and inner sequence orders

N1 = 1,2, . . . ,10 as a function of Jτ , averaged over 50 random
realizations of the bath operators Bμ. Error bars are shown but are very
small. In all our simulations we set J = 10−4 and β = 10−6. Single-
axis error values were computed for log10(Jτ ) = −9, − 8, . . . ,2.
Lines are guides to the eye. Ex is designated by the green squares, Ey

by the red circles, and Ez by the black triangles. Note that log10(Ez)
is the same in all six plots, with a slope of N2 + 1. The slope of
log10(Ex), on the other hand, is N1 + 1. The slope of log10(Ey) is
N1 + 2. Vertical lines denote the largest value of Jτ utilized in the
linear regression used to extract the slope nμ.

Eμ ∼ O(τnμ ) provided the first nμ − 1 terms of the power
series expansion of B ′′

μ(τ ) vanish. More explicitly, we write

B ′′
μ(τ ) =

∞∑
j=nμ

B ′′(j )
μ τ j , (29)

where

B ′′(j )
μ =

∑
�αμ

j

rμ
α1α2...αj

Bα1Bα2 · · · Bαj
, (30)

τ

μ

τ

μ

τ

μ

τ

μ

τ

μ

τ

μ

τ

μ

τ

μ

τ

μ

τ

μ

FIG. 2. (Color online) Single-axis errors after one cycle of
U

(N1,N2)
� for outer sequence order N2 = 4 and inner sequence orders

N1 = 1,2, . . . ,10 (left to right, top to bottom) as a function of Jτ ,
averaged over 50 random realizations of the bath operators Bμ. Other
details as in Fig. 1, except that the single-axis error suppressed by both
the inner and outer sequence, Ey(τ ), exhibits a strong dependence on
the parity of the inner sequence. Note that for each value of N1, Ex(τ ),
and Ey(τ ) are essentially equal for all values of Jτ .

and where �αμ

j = {α1,...,αj } such that αj ∈ {1,x,y,z} and μ =∏
j αj , with the Pauli product rules xy = z,zx = y,yz = x.

In this manner we have a convenient notation to identify
the environment operators present in each single-axis error.
For example, if Ez(τ ) ∼ O(τ 2) then the possible summands
comprising B ′′(2)

z will be proportional to B0Bz, BzB0, BxBy ,
and ByBx . The constituent operators, Bαj

, are the environment
operators initially defined in Eq. (4). The only terms of interest
are those proportional to τnμ , since these are the dominant
terms of B ′′

μ(τ ). Using Eqs. (22), (29), and (30), and the
submultiplicativity property of unitarily invariant norms [37],
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TABLE I. Summary of the scaling for all single-axis errors. Values of nμ were extracted by performing a linear regression, rounded to
the nearest integer, fitting the slopes of the straight line portions of the curves displayed in Figs. 1 and 2, and the additional Figs. 7–10 in
Appendix, between log10(Jτ ) = −9 and the values of log10(Jτ ) indicated by the vertical lines in these figures. (a) Ex , (b) Ey , and (c) Ez for
N1,N2 ∈ {1,2, . . . ,10}. For ny and nz the outer sequence order N2 is displayed in the top row and the inner sequence order N1 in the first
column. Each of the single-axis errors is dominated by the lowest order of Jτ , denoted nμ, therefore Eμ ∼ O[(Jτ )nμ ]. Additional simulations
(not shown) fully continue the trends seen in this table and summarized in Eqs. (35)–(37) all the way up to N1,N2 � 24.

(a) nx = N1 + 1 for N1,N2 ∈ {1, . . . ,10}
(b) ny

N1 N2 = 1 N2 = 2 N2 = 3 N2 = 4 N2 = 5 N2 = 6 N2 = 7 N2 = 8 N2 = 9 N2 = 10

1 3 2 3 2 3 2 3 2 3 2
2 4 3 4 5 6 7 8 9 10 11
3 5 4 5 4 5 4 5 4 5 4
4 6 5 6 5 6 7 8 9 10 11
5 7 6 7 6 7 6 7 6 7 6
6 8 7 8 7 8 7 8 9 10 11
7 9 8 9 8 9 8 9 8 9 8
8 10 9 10 9 10 9 10 9 10 11
9 11 10 11 10 11 10 11 10 11 10
10 12 11 12 11 12 11 12 11 12 11

(c) nz

N1 N2 = 1 N2 = 2 N2 = 3 N2 = 4 N2 = 5 N2 = 6 N2 = 7 N2 = 8 N2 = 9 N2 = 10

1 2 3 4 4 4 4 4 4 4 4
2 2 3 4 5 6 7 8 9 10 11
3 2 3 4 5 6 7 8 8 8 8
4 2 3 4 5 6 7 8 9 10 11
5 2 3 4 5 6 7 8 9 10 11
6 2 3 4 5 6 7 8 9 10 11
7 2 3 4 5 6 7 8 9 10 11
8 2 3 4 5 6 7 8 9 10 11
9 2 3 4 5 6 7 8 9 10 11
10 2 3 4 5 6 7 8 9 10 11

the single-axis error is

Eμ(τ ) ∼ ∥∥B
′′(nμ)
μ τnμ

∥∥
F

� τnμ

∑
�αμ

nμ

∣∣rμ
α1···αnμ

∣∣∥∥Bα1

∥∥
F

· · · ∥∥Bαnμ

∥∥
F

= τnμ

∑
�αμ

nμ

r̃μ
α1···αnμ

Jα1 · · · Jαnμ
, (31)

where we have only kept the leading order contribution in
τ . The coupling strength parameters defined in Eq. (26) have
been incorporated into the sum, such that J1 = β and Jx,y,z �
J . The parameters r̃μ

α1α2...αnμ
account for a conversion factor

between the Frobenius and sup-operator norms. Note that the
reason we chose to work with the Frobenius norm is that
the distance measure (25) is expressed in terms of this norm.
Factoring J nμ out from the sum, the desired functional form
of the single-axis error is

log(Eμ) ∼ nμ log(Jτ ) + log(χμ), (32)

with

χμ =
∑
�αμ

nμ

r̃μ
α1α2...αnμ

γα1γα2 · · · γαnμ
, (33)

and with

γα = Jα/J � 1. (34)

We have written the single-axis error as Eq. (32) in
anticipation of our numerical results, where we plot Eμ as
a function of the dimensionless parameter Jτ . In the β 
 J

regime it is J which sets the relevant bath time scale and
hence we expect that Jτ � 1 should be a necessary condition
for DD to be beneficial over uncontrolled free evolution, and
we shall see that our simulations support this expectation.
The quantity χμ does not depend on τ and hence will play the
role of a constant offset. In the next section we shall unravel the
connection between the suppression order nμ and the sequence
orders N1 and N2.

V. NUMERICAL RESULTS

We now present a numerical analysis of QDD based on the
single-axis errors and the overall distance measure D(U,G).
The initial focus is the single-axis error, which we use to
quantify the decoherence suppression as a function of inner
and outer sequence orders.
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μ μ

μ μ

μ μ

FIG. 3. (Color online) Intermediate single-axis errors for N2 = 3,
as defined in Eq. (42). For given j , the intermediate single-axis error
is computed after j inner Z-type UDD sequences separated by j − 1
pulses. There are N2 + 1 inner UDD sequences. The point j = 5 is
the last X pulse at the end of the last inner UDD sequence, as required
for odd N2. Note that because the data points labeled j = 4 and j = 5
are separated by a single X pulse, and our pulses are instantaneous,
these points have no actual time delay between them.

A. Single-axis errors

Figures 1 and 2 display the single-axis errors as a function
of Jτ for N2 = 3 and N2 = 4, respectively, with the inner
sequence order varying from N1 = 1 to N1 = 10. The pure
bath and system-bath interaction strengths were adjusted such
that the Hamiltonian is dominated by the interaction, β 
 J .
Each data point corresponds to a single cycle of the QDD
sequence averaged over 50 random instances of the parameters
c
μ
αβ appearing in Eq. (28). Since we keep the minimum

pulse interval fixed, the total sequence duration increases with
increasing N1 and N2. The first thing to notice about Figs. 1
and 2 is that they match the prediction of Eq. (32) very well
in the regime of small Jτ . Namely, in all cases we observe
a constant slope, until Jτ ∼ O(1). This is also in agreement
with the result of Ref. [26].

A summary of the scalings for Eμ(Jτ ) are given in Table I
for all combinations of N1,N2 ∈ {1,2, . . . ,10}. The values
of nμ were extracted by performing linear regressions for
log10[Eμ(Jτ )] between log10(Jτ ) = −9 and the values of
log10(Jτ ) indicated by the vertical lines in Figs. 1 and 2, and
rounding to the nearest integer (in all cases the deviation from
an integer value was at most in the third significant digit). We
shall return to Table I after presenting and discussing the data
in the figures.

Let us then consider in detail the effect of varying the
inner and outer sequence orders on the single-axis errors.
When N2 > N1, higher order suppression is expected for the
errors that correspond to the system basis operators which

μ μ

μ μ

μ μ

FIG. 4. (Color online) Intermediate single-axis errors for N2 = 4.
As in Fig. 3 except that there is no final X pulse for N2 even (i.e.,
there are N2 + 1 inner UDD sequences separated by N2 X pulses).

anticommute with the member of the MOOS comprising the
outer X-type sequence. Thus the single-axis errors Ey(τ ) and
Ez(τ ) are most heavily suppressed.

Since only the outer sequence can suppress z-axis, or
Z-type errors [recall Eq. (5)], Ez(Jτ ) only gains additional
error suppression if the outer sequence order is increased. In
Fig. 1, N2 = 3 and Ez(Jτ ) ∼ O((Jτ )4) for all N1, exhibiting
error suppression of the first N2 terms of the interactions
proportional to σ z. Thus QDD operates with UDD efficiency
for error suppression by the outer nested sequence alone.

In a similar manner to Ez(Jτ ), the behavior of Ex(Jτ )
can be attributed to one of the two nested sequences. Namely,
the error measured by Ex is associated with σx , which only
anticommutes with the MOOS operator present in the inner
Z-type sequence. Determined solely by the inner sequence
order, Ex(Jτ ) ∼ O[(Jτ )N1+1]. Essentially, the outer sequence
has no effect on the order of error suppression for Ex(Jτ ), as
can be seen from Fig. 1 for N2 = 3.

The interpretation for Ey(Jτ ) is not as simple, since this
single-axis error is compensated by both the inner and outer
sequences. One might expect both the inner and outer sequence
to contribute to Y -type error suppression [i.e., Ey(Jτ ) to scale
with (Jτ )max(N1,N2)+1]. However, if this were the case then, for
example, the case N1 = 1 would display an equal order of error
suppression for both Ey(τ ) and Ez(τ ). Instead we find that
Ey(Jτ ) ∼ O[(Jτ )N1+2] for N2 = 3. Thus the suppression of
Ey(Jτ ) is constrained by N1, even when N2 > N1, though it is
larger by one order of magnitude than UDD error suppression
efficiency for the inner sequence.

Similar observations apply for all odd-order outer se-
quences we have analyzed (see Appendix A, Figs. 7, 9,
11, and 13). Odd-order sequences are antisymmetric with
respect to time reversal, and the conclusions concerning
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τ

FIG. 5. (Color online) Overall QDD distance measure after one
cycle of U

(N1,N2)
� for outer sequence order N2 = 3 and inner sequence

orders N1 = 1,2, . . . ,6, as a function of Jτ , averaged over 50 random
realizations of the bath operators Bμ. The performance of QDD
progressively improves with increasing N1 up to N2 = N1, indicating
that min{N1,N2} dominates QDD performance.

the case N2 = 3 can be generalized as follows: When the
outer sequence is antisymmetric, terms in the QDD evolution
operator which anticommute with only one element of the
MOOS are suppressed with UDD efficiency, determined by the
order of the nested sequence composed of the corresponding
anticommuting MOOS operator (this applies to σx and σ z). In
contrast, terma that anticommutes with both elements of the
MOOS are suppressed to one order beyond UDD efficiency,
dictated exclusively by the inner sequence order (this applies
to σy). Below we will see how this observation is modified
when we consider larger values of N2.

Comparing the case of the antisymmetric outer sequence of
Fig. 1 to that of the symmetric sequence of N2 = 4 in Fig. 2,
one notices immediately that there is a qualitative difference.

τ

FIG. 6. (Color online) Overall QDD distance measure after one
cycle of U

(N1,N2)
� for outer sequence order N2 = 4 and inner sequence

orders N1 = 1,2, . . . ,6, as a function of Jτ , averaged over 50 random
realizations of the bath operators Bμ. The dependence of the order of
error suppression on min{N1,N2} is again observed.

The single-axis error Ey(Jτ ), the component anticommuting
with both the inner and outer sequences, σy , fluctuates strongly
as a function of N1. A similar effect is observed for other
even values of N2 (see Appendix A, Figs. 8, 10, 12, and 14).
Only the outer sequence order has been changed, therefore this
characteristic is entirely dependent on the fact that the outer
sequence is now symmetric.

Analogous to the antisymmetric outer sequence, Fig. 2
shows that the single-axis error Ez(Jτ ) is independent of
the inner sequence order. The scaling Ez(Jτ ) ∼ O[(Jτ )5]
holds for all N1. Thus the single-axis error Ez(Jτ ) again
exhibits UDD efficiency, independent of the parity of the outer
sequence. Similarly, again Ex(Jτ ) ∼ O[(Jτ )N1+1] in Fig. 2.

However, when we consider the nz results for all values
of N1 and N2 we find that there are exceptions to this simple

TABLE II. Summary of the scaling of the overall distance measure D with respect to inner and outer sequence orders, N1 and N2,
respectively. Values of nD were extracted by performing a linear regression, rounded to the nearest integer, fitting the slopes of the straight line
portions of the curves displayed in Figs. 1 and 2 and the additional Figs. 15–18 in Appendix between log(Jτ ) = −9 and the values of log(Jτ )
indicated by the vertical lines in these figures. The outer sequence order N2 is displayed in the top row and the inner sequence order N1 in the
first column. We find that, as expected, nD = min(nx,ny,nz). Additional simulations (not shown) fully continue the trends seen in this table
and summarized in Eq. (50) all the way up to N1,N2 � 24.

nD

N1 N2 = 1 N2 = 2 N2 = 3 N2 = 4 N2 = 5 N2 = 6 N2 = 7 N2 = 8 N2 = 9 N2 = 10

1 2 2 2 2 2 2 2 2 2 2
2 2 3 3 3 3 3 3 3 3 3
3 2 3 4 4 4 4 4 4 4 4
4 2 3 4 5 5 5 5 5 5 5
5 2 3 4 5 6 6 6 6 6 6
6 2 3 4 5 6 7 7 7 7 7
7 2 3 4 5 6 7 8 8 8 8
8 2 3 4 5 6 7 8 9 9 9
9 2 3 4 5 6 7 8 9 10 10
10 2 3 4 5 6 7 8 9 10 11
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behavior. As can be seen from Table I, when N1 = 1 and
N2 � 4, the value of nz is fixed at 4. The same phenomenon is
observed for N1 = 3 and N2 � 8.

On the basis of our numerical data we can summarize the
scaling of the X- and Z-type single-axis errors as follows:

nx = N1 + 1, (35)

and

nz =

⎧⎪⎨
⎪⎩

N2 + 1 N1 even,

N2 + 1 N1 odd, N2 < 2N1 + 2,

2N1 + 2 N1 odd, N2 � 2N1 + 2.

(36)

Qualitatively, we expect that when the inner sequence works
imperfectly, as is the case for N1 odd, the lowest order sequence
will determine the scaling of the single-axis error, and this is
what is stated in Eq. (36).

As is clear from Fig. 2, the scaling of Ey(Jτ ) is dependent
on the parity of N1. If the inner sequence is of odd parity
then Ey(Jτ ) ∼ O[(Jτ )N1+2] when N2 is odd as well, or
Ey(Jτ ) ∼ O[(Jτ )N1+1] when N2 is even. Thus the scaling
of Ey is dominated by the inner sequence order when N1

is odd. The situation changes when N1 is even. Now, if
N2 is odd the sequence is still antisymmetric, however,
there is an immediate improvement in error suppression,
Ey(Jτ ) ∼ O[(Jτ )max(N1+1,N2)+1]. If the complete sequence
is fully symmetric (both N1 and N2 even) we also find
a scaling dependent on both the inner and outer sequence
orders, Ey(Jτ ) ∼ O[(Jτ )max(N1,N2)+1]. We thus see that the
suppression of interactions which anticommute with both
elements of the MOOS depends sensitively on the parity of
the inner sequence order, and is summarized for Ey(Jτ ) ∼
O[(Jτ )ny ] as

ny =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max(N1,N2) + 1 N1 even, N2 even,

max(N1 + 1,N2) + 1 N1 even, N2 odd,

N1 + 1 N1 odd, N2 even,

N1 + 2 N1 odd N2 odd.

(37)

The dependence upon the symmetry of the inner sequence,
the parity of N1, was first noted by Wang and Liu in the context
of overall QDD performance [27]. The dependence on the
outer sequence symmetry, however, was not noted previously.
Our results show that the symmetry of the outer sequence
impacts the efficiency of σy error suppression as well.

The efficiency of QDD error suppression is directly related
to the efficiency of UDD. Each interaction that anticommutes
with at least one member of the MOOS is expected to achieve
UDD efficiency. Fully symmetric QDD (i.e., even order N1

and N2) recovers the efficiency of UDD for all single-axis
errors. Consequently, QDD performs with optimal efficiency
when it is fully symmetric.

The interactions addressed only by the inner or outer
sequence are separately suppressed with UDD efficiency
corresponding to the order of the corresponding sequence
performing the decoherence suppression. Equivalently, in-
teractions which anticommute with only one member of
the MOOS are suppressed with UDD efficiency in the

QDD scheme. On the other hand, error suppression of the
interactions anticommuting with both elements of the MOOS
is dependent upon the parity of both the inner and outer
sequence orders.

B. Intermediate single-axis errors

Rather than consider the single-axis errors just at the
end of the QDD sequence, here we consider the single-axis
errors prior to the application of each X-type outer sequence
pulse. We will refer to these as “intermediate single-axis
errors” since they are extracted during the QDD evolution,
unlike those presented in Figs. 1, 2, and 7–14 which are
extracted at the end of the complete evolution. By studying
this intermediate time dependence of the errors we shall gain
another interesting perspective on the manner in which the
QDD sequence suppresses decoherence.

Let us define a set of “intermediate QDD” sequences as

Ũ
(N1,j )
� ≡ Z(N1)(sj τ )XZ(N1)(sj−1τ ) · · · XZ(N1)(s1τ ), (38)

where j ∈ {1, . . . ,N2 + 1}. Thus, except for j = 1, Ũ
(N1,j )
�

contains j − 1 X-type pulses sandwiched between j Z-type
UDD sequences. When j = 1

Ũ
(N1,1)
� ≡ Z(N1)(s1τ ) (39)

is just the UDD sequence. We also separately define

Ũ
(N1,N2+2)
� ≡ U

(N1,N2)
� = XN2Ũ

(N1,N2+1)
� , (40)

that is, the complete QDD sequence, Eq. (5). Note that
Ũ

(N1,N2+2)
� contains a final X pulse if N2 is odd, but not if

N2 is even. Similarly to the error expansion (21), we have the
intermediate error expansion,

Ũ
(N1,j )
� = I ⊗ B

(j )
I (τ ) +

∑
μ∈{x,y,z}

σμ ⊗ B(j )
μ (τ ). (41)

In analogy to Eq. (22) we can now define the intermediate
single-axis errors as

E(j )
μ (τ ) = ∣∣∣∣B(j )

μ (τ )
∣∣∣∣

F
, (42)

where j ∈ {1,N2 + 2}. Note that for odd N2 the errors E(N2+1)
μ

and E(N2+2)
μ differ by a single instantaneous X pulse (which is

significant, as our simulations results will demonstrate), while
for N2 even E(N2+1)

μ = E(N2+2)
μ , so that below we do not plot

E(N2+2)
μ in the even case.
Figures 3 and 4 display the intermediate single-axis errors

for N2 = 3 and N2 = 4, respectively, with N1 = 1,2, . . . ,6.
The coupling parameters are fixed at J = 10−4 and β = 10−6

as in the previous figures. Additional results for odd N2 are
given in Appendix A in Figs. 19 and 21, and for even N2 in
Appendix in Figs. 20 and 22.

Several features are noteworthy in these figures.
(1) E(1)

x and E(1)
y are equal and substantially smaller than

E(1)
z , and the difference grows as N1 is increased. This is
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because the inner Z-type sequence only suppresses the X- and
Y -type errors, and the point j = 1 does not include the first
X-type outer sequence pulse. Formally, this is expressed by

E(1)
μ (τ ) = ∣∣∣∣B(1)

μ

∣∣∣∣
F

∼ (s1τ )N1+1, μ ∈ {x,y}
(43)

E(1)
ν (τ ) = ∣∣∣∣B(1)

ν

∣∣∣∣
F

∼ 1, ν ∈ {I,z}.
(2) The intermediate single-axis errors all fluctuate throughout
the QDD evolution. This is due to a reshuffling of the errors
after each outer sequence X-type pulse is applied, a simple
consequence of the rules of Pauli matrix multiplication. To see
why in some detail, consider the effect of the first X ≡ σx ⊗ I

pulse:

XŨ
(N1,1)
� = σx ⊗ B

(1)
I +

∑
ν∈{x,y,z}

σxσ ν ⊗ B(1)
ν

= I ⊗ B(1)
x + σx ⊗ B

(1)
I + σy ⊗ B(1)

z + σ z ⊗ B(1)
y ,

(44)

where we dropped factors of i. The reshuffling effect is clear:
for example, the error single-axis z-type error now comes from
B(1)

y . To explain the j = 2 behavior we should consider the

effect of multiplying XŨ
(N1,1)
� by the next inner UDD sequence

Z(N1)(s2τ ). The ith inner UDD sequence has the expansion,

Z(N1)(siτ ) = I ⊗ BI,i + σx ⊗ Bx,i + σy ⊗ By,i + σ z ⊗ Bz,i ,

(45)

where similarly to Eq. (43) we have

‖Bμ,i‖F ∼ (siτ )N1+1, μ ∈ {x,y},
(46)

‖Bν,i‖F ∼ 1, ν ∈ {I,z}.
Using this to carry out the multiplication to the next order we
have

Ũ
(N1,2)
� = Z(N1)(s2τ )XŨ

(N1,1)
�

= [I ⊗ BI,2 + σx ⊗ Bx,2 + σy ⊗ By,2 + σ z ⊗ Bz,2]

× [
I ⊗ B(1)

x + σx ⊗ B
(1)
I + σy ⊗ B(1)

z + σ z ⊗ B(1)
y

]
.

(47)

Consequently,

E(2)
x (τ ) = ∥∥BI,2B

(1)
I + Bx,2B

(1)
x + By,2B

(1)
y +Bz,2B

(1)
z

∥∥
F

∼ 1,

E(2)
y (τ ) = ∥∥BI,2B

(1)
z + Bx,2B

(1)
y + By,2B

(1)
x +Bz,2B

(1)
I

∥∥
F

∼ 1,

E(2)
z (τ ) = ∥∥BI,2B

(1)
y + Bx,2B

(1)
z + By,2B

(1)
I + Bz,2B

(1)
x

∥∥
F

∼ 2(s1τ )N1+1 + 2(s2τ )N1+1, (48)

where E(2)
x (τ ) is dominated by BI,2B

(1)
I and E(2)

y (τ ) is domi-
nated by BI,2B

(1)
z , neither of which is suppressed, whence the

∼1 result. On the other hand every one of the terms in E(2)
z (τ )

is suppressed. Hence, as can be seen in Figs. 3 and 4 (and
their companions, Figs. 19–22 in the Appendix), at j = 2 both
the X- and Y -type errors have increased relative to j = 1,
while the Z-type error has decreased. One can similarly
understand the remaining oscillations of the intermediate
single-axis errors in terms of this reshuffling of error types.

(3) Ex and Ez oscillate out of phase, while Ey oscillates in
phase with Ex for even N2, but not necessarily for odd N1. This
is again a consequence of error reshuffling. The Y -type error
behaves differently from the other two since it experiences
suppression from both the inner and outer sequences. For the
same reason we always find E

(j )
y < E

(j )
x .

(4) Ex attains its minimum for j = 1 and then slowly
increases, though while maintaining its suppression order.
This is because the X-type error is suppressed only by the
inner sequences, and these are simply applied to it with fixed
order (N1), a total of N2 or N2 + 1 times. Repeated application
of the inner UDD sequence is similar to the periodic DD (PDD)
protocol, whose performance is well known to deteriorate as
time grows [12,40]. The reason is that the error accumulates
over time, without a mechanism for reducing it.

(5) There does not appear to be much of a difference
between even and odd values of N2 in terms of the intermediate
single-axis errors. One difference is that E

(j )
y tends to be

more erratic for odd N2 at high j values. We do not have a
simple explanation for this behavior. Another difference is
that for even N2 all single-axis errors have the same final value
when N1 = N2, but for odd N2 the X-type error is always
slightly worse at the end of the sequence, thus setting the
bottleneck. Perhaps additional pulse interval optimization can
remove this asymmetry.

(6) Only at the very end are all three single-axis errors
simultaneously small. Thus, while suppression of one error
type can be achieved in the middle of the QDD sequence, one
must wait until its completion to suppress all errors.

C. Overall performance

While the single-axis error analysis presented in the
previous two subsections helps in unraveling the mechanism
of QDD performance, it does of course not tell the whole story.
We now present our results for the distance measure D(U,I )
[Eq. (25)], which provides a complete quantitative description
of QDD performance. We expect this overall performance of
QDD to be dictated by the lowest order of τ present in the final
evolution operator, Eq. (21), that is,

D ∼ O[(Jτ )nD ], (49)

where

nD = min(nx,ny,nz). (50)

Overall QDD performance for N2 = 3 and N2 = 4 is shown
in Figs. 5 and 6, respectively. The outer sequence order N2 is
fixed and the inner sequence order N1 is varied from 1 to
6. These results are for the same model considered in the
previous subsection. Additional results are given in Appendix
for N2 = 1,2,5,6 (see Figs. 15–18). A summary of the distance
scaling results is presented in Table II.

Considering N2 = 3 first (Fig. 5), when N2 > N1 the
overall order of error suppression is hindered by the inner
sequence order. This is evident by the increasing order of error
suppression as N1 increases. In this regime the lower sequence
order is determined by the inner sequence, therefore the scaling
of D is equivalent to that of Ex , that is, D ∼ O[(Jτ )N1+1].
As N1 passes N2, there is a saturation of error suppression
corresponding to a performance bounded by the lower outer
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sequence order. The amplitude of performance increases
slightly beyond N2 = N1, however, begins to decrease when
N1 > N2, as evidenced not by the slope but by the offset
of the distance curves. Namely, the ordering, from worst
to best, is N1 = 6,5,4. The latter is an interesting feature
not easily deduced from the single-axis errors. Increasing
the inner sequence order results in an accumulation of error
for the single-axis error dominating the performance; when
N1 > N2 + 1 this corresponds to Ez.

The results are similar for N2 = 4, as shown by Fig. 6.
The order of error suppression, given by the slope, increases
until N1 = N2 in correspondence with an overall performance
dominated by the lowest order of τ present in Eμ. In addition
to the saturation of the order of error suppression, we again
observe an offset-related deterioration. Namely, N1 = 6 is
slightly worse than N1 = 5.

VI. CONCLUSIONS

This work presents a comprehensive numerical analysis
of the error suppression characteristics of QDD. This was
achieved by isolating the single-axis errors associated with
each system basis operator in the system-bath interaction. The
order of error suppression was determined by computing the
single-axis error as a function of the minimum pulse interval.
We performed our analysis for a model in which the system-
environment interaction dominated the internal bath dynamics,
so that we could study the properties of the single-axis errors
in the regime where DD is most beneficial. We constructed
our QDD sequences with N1 Z-type pulses comprising the
inner sequence, and N2 X-type pulses comprising the outer
sequence. We found that the system-bath interaction term
proportional to σx is suppressed with UDD efficiency for all
values of N1 and N2 [Eq. (35)]. The interactions proportional
to σ z and σy both exhibit parity effects [Eqs. (36) and (37)]
whose origins are the symmetry or antisymmetry of the inner
and outer UDD sequences. Of course, permuting the pulse
types of the inner and outer sequences will correspondingly
modify these conclusions.

We also performed an analysis of the intermediate time-
dependent performance of QDD. We found that the single-
axis errors are strongly time dependent, oscillating between
outer-sequence pulses, until they all converge to nearly the
same value after the final outer-sequence pulse. The closest
convergence occurs for QDD sequences with equal inner and
outer orders.

Finally, we computed the overall performance of QDD us-
ing an appropriate distance measure, and reconciled its scaling
with that of the single-axis errors. We showed that overall QDD
error suppression scales with the lowest order of single-axis
error suppression, that is, the first nonvanishing contribution
appears at order min(N1,N2) + 1. QDD accomplishes this
by applying (N1 + 1)(N2 + 1) pulses. We conjecture that
similarly, for NUDD with K nested UDD sequences using
(N1 + 1)(N2 + 1) · · · (NK + 1) pulses, the first nonvanishing
contribution will appear at order minj (Nj ) + 1.

In this work we treated the pulses as ideal, instantaneous
operations. However, this is of course an idealization. An
important topic for future study is robustness with respect
to pulse errors, whether random or systematic. This topic

has been addressed for UDD both theoretically [41,42] and
experimentally [43], and the overall conclusion is that pulse
errors can have a dramatic negative impact unless they are
compensated for. Some combination of pulse shaping and
optimization will surely be required to overcome this problem
in the context of QDD as well.
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APPENDIX: ADDITIONAL NUMERICAL RESULTS

In this Appendix we present Figs. 7–22 in support of the
numerical results presented in the body of the paper.
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FIG. 7. (Color online) Single-axis errors after one cycle for N2 =
1 and N1 = 1,2, . . . ,10 (left to right, top to bottom). See Fig. 1 for
additional details.
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FIG. 8. (Color online) Single-axis errors after one cycle for N2 =
2 and N1 = 1,2, . . . ,10 (left to right, top to bottom). See Fig. 2 for
additional details.
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FIG. 9. (Color online) Single-axis errors after one cycle for N2 =
5 and N1 = 1,2, . . . ,10 (left to right, top to bottom). See Fig. 1 for
additional details.
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FIG. 10. (Color online) Single-axis errors after one cycle for
N2 = 6 and N1 = 1,2, . . . ,10 (left to right, top to bottom). See Fig. 2
for additional details.
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FIG. 11. (Color online) Single-axis errors after one cycle for
N2 = 7 and N1 = 1,2, . . . ,10 (left to right, top to bottom). See Fig. 2
for additional details.
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FIG. 12. (Color online) Single-axis errors after one cycle for
N2 = 8 and N1 = 1,2, . . . ,10 (left to right, top to bottom). See Fig. 2
for additional details.
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FIG. 13. (Color online) Single-axis errors after one cycle for
N2 = 9 and N1 = 1,2, . . . ,10 (left to right, top to bottom). See Fig. 2
for additional details.
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FIG. 14. (Color online) Single-axis errors after one cycle for
N2 = 10 and N1 = 1,2, . . . ,10 (left to right, top to bottom). See
Fig. 2 for additional details.

τ

FIG. 15. (Color online) Overall QDD distance measure after one
cycle for N2 = 1 and N1 = 1,2, . . . ,6. See Fig. 5 for additional
details.

τ

FIG. 16. (Color online) Overall QDD distance measure after one
cycle for N2 = 2 and N1 = 1,2, . . . ,6. See Fig. 6 for additional
details.

τ

FIG. 17. (Color online) Overall QDD distance measure after one
cycle for N2 = 5 and N1 = 1,2, . . . ,6. See Fig. 5 for additional
details.

τ

FIG. 18. (Color online) Overall QDD distance measure after one
cycle for N2 = 6 and N1 = 1,2, . . . ,6. See Fig. 6 for additional
details.
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FIG. 19. (Color online) Intermediate single-axis errors for N2 =
1. See Fig. 3 for additional details.
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FIG. 20. (Color online) Intermediate single-axis errors for N2 =
2. See Fig. 4 for additional details.
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FIG. 21. (Color online) Intermediate single-axis errors for N2 =
5. See Fig. 3 for additional details.
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FIG. 22. (Color online) Intermediate single-axis errors for N2 =
6. See Fig. 4 for additional details.
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