

Second International Conference on Quantum Error Correction University of Southern California, **Dec. 5-9 2011**

Towards Optimal Constructions of Dynamically Corrected Quantum Gates

Lorenza Viola

Dept. Physics & Astronomy Dartmouth College

Dynamical Quantum Error Correction = Non-dissipative QEC: Open-loop Hamiltonian engineering based on [a fixed set of] unitary control operations.

<u>Simplest setting</u>: Multipulse decoherence control for quantum memory \Rightarrow DD

<u>Key principle</u>: Time-scale separation \Rightarrow Coherent averaging of interactions

Paradigmatic example: Spin echo
Effective time-reversal
Hahn 1950.

Theory: Average Hamiltonian formalism

Haeberlen & Waugh 1968; Waugh 1982...

b)

t = T

 $t = t^+$

Key feature: Open quantum system dynamics

Error component includes coupling to a quantum environment/bath...

Small parameter

✓ Nature of environment need not be specified, except qualitatively...

 τ_c \rightarrow Perturbative error cancellation enforced

 $au_{\textit{control}}$

Theory challenges for practical DQEC-I

Goal: Better address timing and sequencing constraints...

Khodjasteh's talk

Even when BB assumption is accurate, min control time scale/pulse repetition rates are finite...

- Q1: What is the best possible DD performance for specified timing resources?
 - Bandwitdth-Adapted DD (BADD)

Hodgson, D'Amico & LV 2010; Uhrig & Lidar 2010; Khodjasteh, Erdelvi & LV 2011.

• Q2: Can such performance be achieved for arbitrarily long storage time and how?

Bandwitdth-Adapted Long-time DD (BALDD)

Khodjasteh, Biercuk & LV, forthcoming.

Scalable lab implementations will face sequencing limitations from digital electronics...

Q3: How can we ensure hardware compatibility and minimize DD sequencing complexity?
 Walsh DD (WDD) Hayes, Khodjasteh, LV & Biercuk, arXiv:1109.6002

Hayes, Khodjasteh, LV & Biercuk, arXiv:1109.6002 PRA, in press. Goal: Better address system and control limitations/non-idealities...

Even with otherwise perfect control, realistic control amplitudes are finite...

→ Open-loop Hamiltonian engineering with bounded control inputs substantially harder:

 $H_{\rm err} \approx 0$ during each BB pulse, whereas ${\rm EPG} = {\rm O}(\tau ||H_{\rm err}||)$ for 'fat' pulses...

• Q1: How [and how well] can we decouple with realistic pulses?

LV & Knill 2003; Pasini et al 2008; Uhrig & Pasini 2009...

• Q2: Can we suppress decoherence while effecting a non-trivial quantum gate?

Strongly modulating pulses, Dynamically Corrected Gates (DCGs)...

Fortunato et al 2002; Pryadko & Quiroz 2008... Khodjasteh & LV 2009...

• Q3: To what extent can DQEC compensate for decoherence <u>and</u> control errors together?

Outline:

I. DCGs, first-order and beyond – What they are and how to make them...

II. How to enhance DCG efficiency and flexibility – Toward combining 'DCG + OCT'...

I. Analytical DCG Framework

Khodjasteh & LV, PRL 102, 080501(2009); PRA 80, 032314 (2009); Khodjasteh, Lidar & LV, PRL 104, 090501 (2010); [Longer paper coming soon...]

• Target system S couples to quantum bath B via interaction Hamiltonian H_{SB} :

$$H = \begin{bmatrix} H_{S,g} + H_{S,err} \end{bmatrix} \otimes I_B + I_B \otimes H_B + H_{SB} \equiv \sum_a S_a \otimes B_a$$

→ System operators $\{S_a\}$ form Hermitian basis, with $S_0 = I_S$ and $S_{a \neq 0}$ traceless.

 \rightarrow Bath operators $\{B_a\}$ are bounded but otherwise arbitrary [possibly unknown].

• Environment *B* is uncontrollable: Controller acts on system only,

- \rightarrow Universal control on S may or may not require a non-zero [drift] system Hamiltonian.
- → Semi-classical limit: Random modification of system Hamiltonian, $H_S \rightarrow H_S(t)$.

Error model assumptions

- Error model includes any deviation between actual controlled evolution and intended one:
 - \rightarrow Ideal gate propagator over duration *T*:

$$U^{0}(T) = Q \otimes \boldsymbol{I}_{B} = Texp\left\{-i\int_{0}^{T} ds\left[H_{ctrl}(s) + H_{S,g}\right] \otimes \boldsymbol{I}_{B}\right\}$$

 \rightarrow Actual gate propagator over duration *T*:

$$U(T) = Texp\left\{-i\int_{0}^{T} ds\left[H_{ctrl}(s) + H_{s,g} + H_{err}\right]\right\} \equiv Q\exp\left(-iE_{Q}\right) -$$
Error action operator

Simplifying assumptions:

(A1) Perfect control – No errors are introduced by the controller; (A2) Driftless system – Can effectively assume that $H_{S,q} = 0$, $H_S \equiv H_{S,err} \Rightarrow$

$$U_{ctrl}(T) \equiv Q = Texp\{-i\int_{0}^{T} ds \ H_{ctrl}(s)\}, \quad U(T) = Q \ Texp\{-i\int_{0}^{T} ds \ U_{ctrl}^{\dagger}(s)H_{err} U_{ctrl}(s)\}$$

• Focus on arbitrary linear [non-Markovian] decoherence on qubits:

$$H_{SB} = \sum_{i=1}^{n} \sum_{a=x,y,z} \sigma_a^{(i)} \otimes B_a^{(i)}, \qquad H_{err} = I_S \otimes H_B + H_{SB}$$

 \rightarrow Error operators we wish to suppress:

$$\Omega_{\rm err} = {\rm Span} \{ \sigma_{\alpha}^{(i)} \otimes B_{\alpha}^{(i)} \mid B_{\alpha}^{(i)} \text{ nonzero in } H_{\rm err} \}$$

• Error action operator leads to a natural measure to quantify EPG:

$$\mathsf{EPG} = \| \underbrace{mod}_{B}(E_{Q}) \|_{op} \Rightarrow \| \rho_{S}(\tau) - \rho_{S}^{0}(\tau) \|_{1} \leq \| mod_{B}(E_{Q[\tau]}) \|_{op}$$

Non-pure-bath component Actual Ideal

• Control resources: Universal set of tunable 'primitive' Hamiltonians e.g. $\left\{h_x(t)\sigma_x^{(i)}, h_y(t)\sigma_y^{(i)}, h_{zz}(t)\sigma_z^{(i)} \otimes \sigma_z^{(j)}\right\}, i, j=1,...,n$

Assumptions:

(C1) Finite-power and bandwidth constraint:

Bounded control amplitude, $h_a(t) \le h_{max}$, and minimum gate duration, $\tau_{min} > 0$;

(C2) Strechable and scalable pulse profiles:

 \rightarrow <u>Same</u> primitive gate Q can be implemented with different pulse shapes and speed

Control objective

DCG block structure:							
\rightarrow Cascade N primitive gates.	Q_1	Q_2		Q_j		Q_N	
→ If each individual EPG is sufficiently small,]
$E_{(Q_{1}[\tau_{1}]Q_{N}[\tau_{N}])} = E_{Q_{1}[\tau_{1}]} + P_{1}^{\dagger} E_{Q_{2}[\tau_{2}]} P_{1} + + P_{N-1}^{\dagger} E_{Q_{N}[\tau_{N}]} P_{N-1} + P_{N-1}^{\dagger} P_{N-1} + P_{N-1}^{\dagger} P_{N-1} + P_$	$+C^{[}$	2 +],					
	<u>_</u> 1	D N-1	=Q	N - 1	Q	1	
as long as the [discrete-time] Magnus expansion converges,	Σ	_i <i>n</i>	nod _B	$\left(E_{\mathcal{Q}}\right)$	$Q_i[\tau_i]$	< ;	π.

- EPGs do not simply add: Individual errors are 'modulated' by the applied control path. Because control path is known, errors have a systematic dependence upon gate duration...
- Seek a control modulation s.t. the effect of H_{err} is perturbatively [coherently] averaged out:

1st-order DCGs: Remove leading error

$$\mathsf{EPG}_{\mathsf{uncorrected}} = \| \operatorname{mod}_{B} (E_{\mathcal{Q}^{[0]}[\tau]}) \| \propto \tau + \mathsf{O}(\tau^{2})$$

$$\downarrow$$

$$\mathsf{EPG}_{\mathsf{corrected}} = \| \operatorname{mod}_{B} (E_{\mathcal{Q}^{[1]}[\tau^{[1]}]}) \| \propto \tau^{2} + \mathsf{O}(\tau^{3})$$

Dynamically correcting NOOP

- If target gate Q = I, a solution is provided by EDD: LV & Knill, PRL 90 (2003).
 - → Primitive gates implement the generators $\{\gamma_l\} \in \Gamma$, l=1,...,L, of a DD group $G = \{g_i\}, i=1,...,G$.
 - \rightarrow Generators are applied by following an Eulerian cycle on the Cayley graph of G_{DD} .

$$E_{EDD} = \sum_{i=1}^{L} \sum_{i=1}^{G} U_{g_i}^{\dagger} E_{y_i} U_{g_i} + E_{EDD}^{[2+]}, \quad \| mod_B(E_{EDD}) \| = \| mod_B(E_{EDD}^{[2+]}) \| = O(\tau^2)$$

Linear decoherence on qubits:

$$G = \mathbb{Z}_2 \times \mathbb{Z}_2 \rightarrow \{ I^{(\text{all})}, X^{(\text{all})}, Y^{(\text{all})}, Z^{(\text{all})} \}, \ \Gamma \equiv \{ X, Y \}$$

→ Collective generators can be implemented by collective primitive Hamiltonians:

$$X^{(all)} = X_1 \otimes \ldots \otimes X_n = \exp\left[-i \int_0^\tau h_x(s)(\sigma_x^{(1)} + \ldots + \sigma_x^{(n)}) ds\right]$$

- In EDD, no information about how primitive EPGs depend on control implementation is used/required!
 - → No-Go thm for 'black-box' DQEC: Only gates that commute with Ω_{err} can be achieved with 'control-oblivious' design...

Euler cycle: X Y X Y Y X Y XCycle length: $\tau_{EDD} = (LxG)\tau$

DCGs beyond NOOP

 Simple[st?] way to evade No-Go: Identify two combinations of primitive gates that share same first-order error ⇒ [First-order] 'balance pair' for target gate Q:

$$Q_* = Q \exp(-iE_Q), \quad I_Q = \exp(-iE_Q)$$

 Modified Eulerian construction: Implement control path which begins at *I* and ends at *Q* on 'augmented' graph ⇒

(i) To non-identity vertex, attach edge labeled by I_O

(ii) To identity vertex, attach edge labeled by \mathcal{Q}_*

$$E_{DCG} = E_{EDD} + \sum_{i=1}^{G} U_{g_i}^{\dagger} E_{Q} U_{g_i} + E_{DCG}^{[2+]}$$

Total 1st-order error vanishes as long as the primitive errors $E_{\gamma_{1}}$ and E_{Q} obey DD condition \Rightarrow

$$\| mod_B(E_{DCG}) \| = \| mod_B(E_{DCG}^{[2+]}) \| = O(\tau^2)$$

Significantly smaller error wrto 'direct switching'.

Euler path: X I Y I X I Y Y X Q

Key insight: Map out and exploit relationship between primitive error and control profile...

• Naïve balance pairs: Assume access to a stretchable and (sign-)reversible gating profile,

 \rightarrow Example of primitive gate combinations sharing the same [leading] error:

$$I_{Q} \equiv Q'[\tau]Q[\tau], \quad Q_{*} \equiv Q[2\tau],$$

$$mod_{B}(E_{I_{Q}}) = mod_{B}(E_{Q_{*}}) + O(\tau^{2})$$
$$0$$
$$Vs.$$
$$0$$
$$2\tau$$

- Enhanced balance pairs: Assume access to [just] stretchable gating profiles,
 - \rightarrow <u>Portable</u> primitive gate combinations sharing the same [leading] error:

$$I_{Q} \equiv I_{Q}^{[0]} = Q^{-1}[\tau]Q[2\tau], \quad Q_{*} \equiv Q_{*}^{[0]} = Q[\tau]Q^{-1}[\tau]Q[\tau], \quad mod_{B}(E_{I_{Q}}) = mod_{B}(E_{Q_{*}}) + O(\tau^{2})$$

→ DCG resource overheads:

 $8(2) + 3 \times 4(2) \implies 20(8)$ primitives per DCG for linear decoherence(pure dephasing)

<u>Strategy</u>: Increase order of cancellation by using recursive design \Rightarrow Concatenated DCGs $\{Q^{[0]}\} \equiv$ Primitive gates; $\{Q^{[1]}\} \equiv I$ st-order DCGs; ... $\{Q^{[m]}\} \equiv m$ th-order DCGs

- Balance pairs of order *m* may be given in terms of *m*th-order implementation of *Q* and *Q*⁻¹: $I_Q^{[m]} = Q^{-1,[m]}[\tau] Q^{[m]}[2^{1/(m+1)}\tau], \quad Q_*^{[m]} = Q^{[m]}[\tau] Q^{-1,[m]}[\tau] Q^{[m]}[\tau], \quad m \ge 0$ $mod_B(E_{I_Q}) = mod_B(E_{Q_*}) + O(\tau^{m+2})$
- CDCG algorithm \Rightarrow Embed lower-order DCGs as components for EDDs and balance pairs:
 - f = 0.

- ✓ $\Omega_{\text{err}}^{[m]}$ includes all errors uncorrected at level $m \Rightarrow$ Identify smallest group $G^{[m]}$, of size G_m , that decouples all errors in $\Omega_{\text{err}}^{[m]}$.
- \checkmark Represent the L_m generators of $G^{[m]}$ as primitive gates or combinations thereof.

Use generators for $G^{[m]}$ and the construction for *m*th-order balance pair to generate $Q^{[m+1]}$.

Repeat recursively by substituting the newly constructed gates for the old ones: m=m+1. Go to step 2.

CDCGs: Performance analysis

- Key step in establishing error bound \Rightarrow show that the Magnus expansion of error $E_{Q^{[m]}}$ contains only terms that start at $O(\tau^{m+1})$ (modulo pure-bath terms)...
 - \rightarrow Starting at m = 0 with primitive gates of duration τ , duration at order *m* obeys

$$\tau_{m+1} = \begin{bmatrix} G_m L_m + 3 + (G_m - 1)(1 + 2^{1/(m+1)}) \end{bmatrix} \tau \quad \Rightarrow \quad \tau_{m+1} \le \begin{bmatrix} G_m (L_m + 3) \end{bmatrix}^m \tau \equiv (\chi_m)^m \tau$$

Euler path
Balance pairs

 \rightarrow [Worst-case] error upper bound, c = O(1):

$$\left\| mod_{B}(E_{DCG}^{[m]}) \right\| < c 4^{m} (\chi_{m})^{m^{2}+m} (\left\| H_{err} \right\| \tau)^{m+1}$$

• For fixed minimum switching time τ , error bound implies optimal concatenation level,

$$m_{opt} = \left[-\frac{1}{2} \left[\log_{\chi} (4 \tau \| H_{err} \|) + 1 \right] \right], \quad \chi \equiv \chi_{opt}$$

below which CDCGs are guaranteed to perform better than first-order DCGs.

→ Smaller τ ⇒ Finer temporal resolution of CDCG 'digitized pulse profile'...

CDCGs: Illustrative results

 \rightarrow Case study: Electron spin qubit undergoing hyperfine decoherence in QD

$$_{error} = \mathbf{I}_{s} \otimes \sum_{k=1}^{N} D_{kl} \vec{I}_{k} \cdot \vec{I}_{l} + \vec{\sigma} \otimes \sum_{k=1}^{N} A_{k} \vec{I}_{k}, \quad N = 5$$

 $\Omega^{[m]}_{err} \equiv \Omega_{err} = \text{Span}\{\sigma_a \otimes B_a, a = x, y, z\}, \text{ independent upon } m$

$$G^{[m]} \equiv G = \mathbb{Z}_2 \times \mathbb{Z}_2 \rightarrow \{I, X, Y, Z\}, \Gamma \equiv \{X, Y\} \Rightarrow \chi_m \equiv \chi = 4 \times 5 = 20$$

Gate sequence [right to left!] for *m*th-order DCG:

Η

$$Q^{[m+1]} = Q_*^{[m]} X^{[m]} Y^{[m]} X^{[m]} Y^{[m]} Y^{[m]} I_Q X^{[m]} I_Q Y^{[m]} I_Q X^{[m]}$$

- → Target gate: $Q = \exp(-i\frac{2\pi}{3}\sigma_x)$
- → Steeper error-corrected 'slopes' achieved as concatenation level grows, if switching time is small.
- → Fidelity improvement by as many as 13 orders of magnitude...

Hayes et al, arXiv:1104.1347; Hayes, Khodjasteh, LV & Biercuk, arXiv:1109.6002.

→ Recently implemented Mølmer-Sørensen 'composite' gate sequences can be interpreted as CDCGs under a simple error model...

$$U_{Q}(t) = \exp[S_{N}(\alpha(t)a^{\dagger} - \alpha(t)^{*}a)]Q, \quad Q = \exp[-i\Phi(t)S_{N}^{2}] \qquad \text{Spin-dependent gate}$$
$$\alpha(t) = \frac{\Omega}{2}\int_{0}^{t}\exp[-i(\delta + \Delta)s]ds \qquad \Delta = \text{Detuning error} \ll \delta$$

Gate relies on 'disentangling' spin and motional degrees of freedom at $t_g = j2\pi/\delta \Rightarrow$ Residual spin-motional entanglement results in error action $-iE_Q(t) = S_N(\alpha(t)a^{\dagger} - \alpha(t)^*a)$

\rightarrow Key simplifications:

- (1) Ideal spin-flips (X gates) can be effected;
- (2) Target gate commutes with X;
- (3) Error action anti-commutes with X gate \Rightarrow

$$X Q \exp(-iE_Q) X Q \exp(-iE_Q) =$$
$$Q^2 X \exp(-iE_Q) X \exp(-iE_Q) = Q^2$$

→ 1st-order implementation of gate $Q^2 \Rightarrow$ can iterate to achieve higher-order suppression...

II. Progress towards Optimized DCG Framework

Recap thus far...

• CDCGs offer a proof-of-concept that arbitrarily accurate decoherence suppression solely based on open-loop control is possible in principle.

- → Highly portable only need qualitative knowledge of environment and strechable controls...
- → Fully analytical rigorous performance analysis and [often] physical insight...
- → Can concatenate with composite pulses for robustness under systematic control errors...

The bad...

- Ignoring the system Hamiltonian [driftless assumption] can be a serious oversimplification.
 - \rightarrow What if H_S is required for universality and synthesizing primitive gates is non-trivial?...
 - → How to construct balance pairs if the relationship between errors and control is not manifest?...

The ugly...

- CDCG constructions can be very inefficient...
 - \rightarrow Single qubit, n=1: Sequence length grows exponentially with concatenation level...
 - \rightarrow Multiple qubits, *n*: Sequence length typically [also] grows exponentially with system size...

$$G^{[m]} \equiv G_{adv} \simeq (\mathbb{Z}_2 \times \mathbb{Z}_2)^{\times n} \implies G_{adv} \equiv 4^n, \ L_{adv} \equiv 2, \ \chi_{adv} \equiv 4^n \times 5$$

• For a given target gate, the actual control outcome is partitioned into ideal and error action:

 \rightarrow Actual gate propagator over duration *T*:

$$U(T) = Texp\{-i\int_{0}^{T} ds \left[H_{ctrl}(s) + H_{s,g} + H_{err}\right]\} = Q \exp(-iE_{Q})$$

CDCG framework provides a constructive recipe for finding a solution to

(1)
$$Q e^{i\phi} - Texp\{-i\int_{0}^{T} ds \left[H_{ctrl}(s) + H_{s}\right]\} = 0$$
 Gate synthesis
(2) $mod_{B}(E_{Q}) \propto \tau^{m} + O(\tau^{m+1})$ Error cancellation

provided that (1) perfect [universal] gate synthesis can be achieved if $H_{err}=0$, and (2) a systematic relationship can be found between control and error for each segment.

- The more detail is available about error model and control specification, the lesser the need for portable DCG constructions ⇒ Optimize for specific control scenarios.
- Numerically optimized CDCGs: Rely on numerical search methods to solve one/both the above equations, by restricting solutions [control variables] within the admissible domain.
 - → Similar in spirit to strongly modulating pulses, OCT approaches...

Boosting efficiency via parametric optimization

Address the two problems separately [for now] – <u>Problem 1</u>: Retain driftless assumption...

• <u>Strategy:</u> Exploit freedom in describing control profiles to optimize parametrically EPG.

Choose a desired pulse shape and parametrization – e.g., rectangular.

$$Q(\{h_{l}\tau_{l}\}) = Texp\{-i\int_{0}^{T} ds H_{ctrl}(s)\} = \prod_{l=1}^{n} exp[-ih_{l}H_{l}\tau_{l}], \quad T = \sum_{l=1}^{n} \tau_{l}$$

✓ Gate synthesis is automatically accommodated.

Obtain symbolic expansion of error action E_Q in terms of perturbative error operators.
 For a given sequence, error can be evaluated parametrically order-by-order.

Search numerically for parameters that cancel prefactor for each algebraically independent term, while implementing desired gating action:

E.g., for 2nd-order DCG: $mod_{B}(E_{Q}^{[2]}) \propto \tau^{3} + O(\tau^{4}) \Rightarrow$ $\begin{cases} z_{1} \equiv mod_{B}(E_{Q}^{(1)}[\{h_{l},\tau_{l}\}]) = 0\\ z_{2} \equiv mod_{B}(E_{Q}^{(2)}[\{h_{l},\tau_{l}\}]) = 0 \end{cases}$

The existence of arbitrary-order DCGs guarantees existence of a solution to search problem.

 \rightarrow Explicit expressions for z_1 and z_2 depend on problem specification...

Illustrative results

→ Case study: Single qubit coupled to purely dephasing spin bath

$$H_{error} = \mathbf{I}_{s} \otimes \sum_{k=1}^{N} D_{kl} \vec{I}_{k} \cdot \vec{I}_{l} + \sigma_{z} \otimes \sum_{k=1}^{N} A_{k} I_{kz}, \quad N = 5$$

Objective: 2nd-order DCGs. Assume rectangular [reversible] profiles. Recall:

$$\mathbf{\tau}_{m+1} = \left[G_m L_m + 3 + (G_m - 1)(1 + 2^{1/(m+1)}) \right] \mathbf{\tau}_{m+1}$$

- → Analytical generic DCG: $\tau_2 = (14 + 3\sqrt{2})20 \tau \approx 365 \tau$
- → Analytical simplified DCG: $\tau_2 = (14 + 3\sqrt{2}) 8 \tau \approx 146 \tau$
- → Numerically optimized DCG: $\tau_2 \approx 21 \tau$

Address the two problems separately [for now] – Problem 2: Focus on first-order DCGs...

- <u>Strategy:</u> Search for simultaneous solution to gate synthesis and error cancellation conditions.
 - → Simplest setting: Single qubit, [effectively] closed system, piecewise-const controls:

$$H_{tot} = H_s + H_{err} + H_{ctrl}(t) = \omega \sigma_z + \epsilon \sigma_z + h(t)\sigma_x$$

Relevant to singlet-triplet qubit in DQD: $\omega \rightarrow$ magnetic field gradient, $h(t) \rightarrow$ exchange splitting Foletti et al, Nature Phys. 2009; Grace et al, arXiv:1105.2358.

- → Drift is required for complete controllability but prevents a simple relationship between duration of each control segment and associated error action to be found...
 - ✓ Cannot simply redefine $H'_{err} = H_{err} + \omega \sigma_z$ need not be small... only x-direction controllable...

<u>Objective</u>: Determine control solution that cancels [minimizes] simultaneously (1) Fidelity loss in the absence of error (gate synthesis) $\Rightarrow z_1(\{h_l, \tau_l\}) \equiv \|U_{ctrl}(T) - Q\|$ (2) Effect of error Hamiltonian up to the 1st-order in $\epsilon \Rightarrow z_2(\{h_l, \tau_l\}) \equiv \|E_Q^{[1]}\|$

(Simplest choice) $z(\{h_l, \tau_l\}) = z_1(\{h_l, \tau_l\}) + z_2(\{h_l, \tau_l\})$

Illustrative results

→ 'Twice easier' to synthesize gate vs. synthesizing a <u>robust</u> [1st-order DCG] gate: Minimization of z_1 alone ⇒ 4 control segments suffice $[z_1^{min} = 2.3 \cdot 10^{-8}]$ Minimization of $z_1 + z_2$ ⇒ At least 8 control segments required $[z^{min} = 2.0 \cdot 10^{-7}]$

→ 'Flatness' of DCG solution indicates its robustness compared to optimized gate Optimized gate has higher fidelity in the limit $\epsilon \rightarrow 0$ [$\epsilon < 10^{-8}$] DCG provides higher fidelity in a wide range $\epsilon > \epsilon_{min}$, $\epsilon_{min} T = O(z_1^{min} / z_2^{min})$ [$\epsilon_{min} \approx 10^{-4}$]

Conclusion

 DQEC – DD plus CDCGs – has the potential to reduce memory and gate errors below the level required by accuracy threshold for non-Markovian QEC.

See also Ng, Lidar & Preskill, PRA 2011.

→ Make contact with filter-function formalism for classical noise settings...

Green, Uys & Biercuk, arXiv:1110.6686.

 \rightarrow Explore DCGs with continuous driving fields...

Fanchini, Napolitano & Caldeira, arXiv:1005.1666; Chaudhry & Gong, arXiv:1110.4695.

- Plenty of room exists for improving the efficiency of CDCG constructions and for optimizing their performance under specific system/control assumptions.
 - ✓ Single-qubit setting:
 - → Develop comprehensive numerically-optimized solution, make formal contact with OCT (analyze complexity, landscape and convergence properties) ...
 - Many-qubit setting:
 - → Need to better exploit locality and sparsity of physical error models...
- Dedicated experimental realizations/benchmarking of DCGs needed...

Stay tuned...

Quantum Firmware Collaboration

Michael J. Biercuk

www.physics.usyd.edu.au/~mbiercuk

Lorenza Viola

www.dartmouth.edu/~viola/

Postdoc position available!

Amir Yacoby

yacoby.physics.harvard.edu/

