Towards Optimal Constructions of
Dynamically’ Corrected Quantum Gates




Jihepremise:; DOEC 1121

Dynamical Quantum Error Correction = Non-dissipative QEC:
Open-loop Hamiltonian engineering based on [a fixed set of| unitary control operations.

Simplest setting: Multipulse decoherence control for quantum memory = DD

Key principle: Time-scale separation = Coherent averaging of interactions

Paradigmatic example: Spin echo <« » Effective time-reversal
Hahn 1950.

Theory: Average Hamiltonian formalism

Haeberlen & Waugh 1968; Waugh 1982... h)

Key feature: Open quantum system dynamics

v Error component includes coupling to a quantum environment/bath... .
v Nature of environment need not be specified, except qualitatively...

T control

Small parameter
<

Cc

= Perturbative error cancellation enforced




challengesiforpracticaliDRQEC-I

Goal: Better address timing and sequencing constraints...

Khodjasteh's talk

Even when BB assumption is accurate, min control time scale/pulse repetition rates are finite...

© Q1: What is the best possible DD performance for specified timing resources?
Hodgson, D'Amico & LV 2010; Uhrig & Lidar 2010;
Khodjasteh, Erdelyi & LV 2011.

L Bandwitdth-Adapted DD (BADD)

© Q2: Can such performance be achieved for arbitrarily long storage time and how?

g Bandwitdth-Adapted Long-time DD (BALDD) Khodjasteh, Biercuk & LV, forthcoming.

Scalable lab implementations will face sequencing limitations from digital electronics...
© Q3: How can we ensure hardware compatibility and minimize DD sequencing complexity?

L walsh DD (WDD) Hayes, Khodjasteh, LV & Biercuk, arXiv:1109.6002
PRA, in press.



challenages forpracticall DOEC-2

Goal: Better address system and control limitations/non-idealities...

Even with otherwise perfect control, realistic control amplitudes are finite...
= Open-loop Hamiltonian engineering with bounded control inputs substantially harder:

H,. ~ 0 during each BB pulse, whereas EPG = O(t ||Herr||) for 'fat' pulses...

© Q1: How [and how well| can we decouple with realistic pulses?

© Q2: Can we suppress decoherence while effecting a non-trivial quantum gate?

L Strongly modulating pulses, Dynamically Corrected Gates (DCGs)...

Fortunato et al 2002; Pryadko & Quiroz 2008...
Khodjasteh & LV 20009...

© Q3: To what extent can DQEC compensate for decoherence and control errors together?

Outline:
|. DCGs, first-order and beyond — What they are and how to make them...
Il. How to enhance DCG efficiency and flexibility — Toward combining 'DCG + OCT"...




l. Analytical
DCG Eramework




- |
CLASSICAL | TARGET ' CONTROLLED
CONTROLLER ': SYSTEM., S =% DYNAMICS
. |
: BATH, B l

© Target system S couples to quantum bath B via interaction Hamiltonian H:

Pure-system Pure-bath

T

H=[Hgy+H. ] ®I;+1,®Hy+ Hy, = Za S ®B,

— System operators {S,} form Hermitian basis, with S, = I  and S, traceless.

a#0

— Bath operators {B,} are bounded but otherwise arbitrary [possibly unknown].

@ Environment B is uncontrollable: Controller acts on system only,

H_ (=H+H, @, H )= Zm (Hm® IB) h,(t) <«——— Control inputs

t
U () =Texp - if . ds H Ctrl(s)} <« Control propagator

= Universal control on S may or may not require a non-zero [drift] system Hamiltonian.

= Semi-classical limit: Random modification of system Hamiltonian, H, - HS( 1),
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@ Error model includes any deviation between actual controlled evolution and intended one:

= |deal gate propagator over duration T-
T
U'(T)=0olI, =Texp{—if0 ds [Hml(s) + Hs,g] ®I,)
= Actual gate propagator over duration T

T -
U(T)= Texp{—ifo ds [Hml(s) +Hg + Herr]} =Qexp(—iE,) =« Erroraction
’ operator

Simplifying assumptions:

(A1) Perfect control — No errors are introduced by the controller;
(A2) Driftless system — Can effectively assume that H = 0, Hy = Hg e =

Uo(T)= Q= Texp(—i [ ds H,(s)|, U(T)=QTexp(~i[, ds U',(s)H U .\(s))

@ Focus on arbitrary linear [non-Markovian| decoherence on qubits:

_\ (i) o pli)
Hg=2 ZHM o,'®B),  Hey=108 Hy+ Hy,
= Error operators we wish to suppress:

Q.= Span{ag)®BS)|BS) nonzeroin H__|

err



Contrel.assumptions

@ Error action operator leads to a natural measure to quantify EPG:

EPG = HmOdB(EQ) w = llps(t) _P(s)(T)”l = HmOdB<EQ[T])

— —

Non-pure-bath component Actual Ideal

op

@ Control resources: Universal set of tunable 'primitive' Hamiltonians
e.g. Lh () (0ol b (o ea! ], i j=1,..,n

x 277y y 2 Tzz z

Assumptions:

(C1) Finite-power and bandwidth constraint:
Bounded control amplitude, # (z) <h_.,and minimum gate duration, t_._> 0;

(C2) Strechable and scalable pulse profiles:
— Same primitive gate Q can be implemented with different pulse shapes and speed

i Rectangular i Trapezoidal

05 05




DCG block structure:

— Cascade N primitive gates. 0,0, . O .. Oy

= |f each individual EPG is sufficiently small,

P, +c*

\PN—leN—l"'Ql

as long as the [discrete-time]| Magnus expansion converges, Zi H mOdB(EQi[ri]) H <.

— f f
E( EQ1[71}+P1EQz[Tz}Pl—i_.”—i_PN_lE

Ot ...0y[ty ) Oyltyl

@ EPGs do not simply add: Individual errors are 'modulated’ by the applied control path.
Because control path is known, errors have a systematic dependence upon gate duration...

o Seek a control modulation s.t. the effect of H_,, is perturbatively [coherently| averaged out:

EPGyncorrected = H mod g (EQ“”[T]) H x T+ O(Tz)
Ist-order DCGs:
Remove leading error
EPG orrected = H mOdB(EQm[TM]) HOC v+ 0(7Y)



cojecting NOOPL

© |f target gate O = I, a solution is provided by EDD:

LV & Knill, PRL 90 (2003).

= Primitive gates implement the generators {y, }e I', I=1,...,.L, of a DD group G= {g; }.i=1,...G.

= Generators are applied by following an Eulerian cycle on the Cayley graph of GDD.

Epp = Zlel Zil UZ,-Elegi—l_ EEEZD+D]’ || mod 4 (E gp,,) || :H mOdB<E552D+D}> H: 0<172>

Linear decoherence on qubits:
G = Z2 X Zz N {I(all)’ X(all)’ Y(all)’ 7zl VT ={X, 1}

= Collective generators can be implemented by
collective primitive Hamiltonians:

x'“= X1®...®Xn=exp[— i b ()04l ds]

@ |[n EDD, no information about how primitive EPGs
depend on control implementation is used/required!

= No-Go thm for 'black-box' DQEC: Only gates that commute
with € can be achieved with 'control-oblivious' design...

4 7
5 2

Euler cycle: XYXYVYXYX
Cycle length: 1, = (LxG)t

EDD ™



PDCGEs beyond NOOP o/21

@ Simple[st?] way to evade No-Go: Identify two combinations of primitive gates that
share same first-order error = [First-order| 'balance pair' for target gate O:

Q.=Qexp(—iE,), I,=exp(—iE,)

© Modified Eulerian construction: Implement control path i 2 Y !
which begins at 7 and ends at Q on 'augmented' graph = Y ,49 (7)) /*
(i) To non-identity vertex, attach edge labeled by 1, 7 10
(ii) To identity vertex, attach edge labeled by Q.
8 3

G
_ t [2+]
EDCG_EEDD—I_Zi:l Ug,-EQUg,.—I_EDCG

) 11
I x
Total 1st-order error vanishes as long as the 12 Q 1

primitive errors EYland E, obey DD condition =

Eulerpath: X I' V' I X I XV X
| mod ,(E oeq) || = mod,, (B3 | = 027 e Q

X
D=
1
Significantly smaller error wrto 'direct switching'. Q X e

Euler path: X I X Q




Key insight: Map out and exploit relationship between primitive error and control profile...

© Naive balance pairs: Assume access to a stretchable and (sign-)reversible gating profile,

Texp{ zf hy(t)H dt} Q[sr]=Texp[—£fzthg<§)Hth}

E,lt] E',lst]=5E,|1]

— Example of primitive gate combinations sharing the same [leading] error:

1,=0'[t]0[t], 0,=0]2], ,- T

VS.

modB(E,Q)=m0dB(EQ*)+0(rz) 0 0 21

@ Enhanced balance pairs: Assume access to |just] stretchable gating profiles,

- Portable primitive gate combinations sharing the same [leading] error:

I,=1,'=07"[x]o[27], 0,=0V'=0[x]07'[*|0[x], mod,(E, )=mod,(E,)+0(x)

= DCG resource overheads:

8(2) +3x4(2) = 20(8) primitives per DCG for linear decoherence(pure dephasing)



Strateqy: Increase order of cancellation by using recursive design = Concatenated DCGs

{Q[O]} = Primitive gates; {Qm} = Jst-order DCGs; ... {Q[’"]} = mth-order DCGs

© Balance pairs of order m may be given in terms of mth-order implementation of Q and O':

I[én} _ Q—l,[m][t] Q[m][zll(m+l)t]’ Q[*m} _ Q[m}[t] Q—l,[m][t] Q[m][t], m=0
mod ,(E, )= mod ,(E, )+ o(t""?)

@ CDCG algorithm = Embed lower-order DCGs as components for EDDs and balance pairs:

€ Setm=0.
@ Start with strechable mth-order primitive gates 0= Ql"and their error model Q__ /.

v Qerr[’"] includes all errors uncorrected at level m = Identify smallest group G/, of size G,

that decouples all errors in Q__ ")

v Represent the L generators of G as primitive gates or combinations thereof.
@ Use generators for G/ and the construction for mth-order balance pair to generate Qm+/),

@ Repeat recursively by substituting the newly constructed gates for the old ones:
m=m+1. Go to step 2.



© Key step in establishing error bound = show that the Magnus expansion of error E |,

contains only terms that start at O(t"*/) (modulo pure-bath terms)...

= Starting at m = 0 with primitive gates of duration t, duration at order m obeys

tm+l=[GmLm-|-3-I-(Gm—l)(l-l-Zl/(m“))]t > 1., <[G (L +3)]"t=(x )"

m+1 —
\
Euler path

- [Worst-case] error upper bound, ¢ = O(1):

Balance pairs

Jmod () | < 47, 1 )"

err

@ For fixed minimum switching time 1, error bound implies optimal concatenation level,

m,, =l—%[logx(4 ‘cHH

LAr]]s x=x,

below which CDCGs are guaranteed to perform better than first-order DCGs.

= Smaller T = Finer temporal resolution of CDCG 'digitized pulse profile'...



B — Case study: Electron spin qubit undergoing hyperfine decoherence in QD

N > . N .
Herr0r= IS®Zk:1DklIk'II+0-®Zk:1Ak1k’ N=5

Qlml =Q  =Span{o,®B,,a=x,y,z}, independent upon m

S 1 Gri=G=2Z,XZ, - {IXY,Z},T = {X, Y} =X, =X=4x5=20
|‘l/s>:ﬁ(|0>+|1>) .
" Gate sequence [right to left!| for mth-order DCG:
pr=1,2
v Q"= gl x Iyl g InlyInlylnly ylnly il xin
2 0
- Target gate: Q=exp(—i—nax)

3

— Steeper error-corrected 'slopes’ 5

(ol.
= DCG it

achieved as concatenation level 2 -10 ; . -
. . . . . O‘)_ - '.@ —&-DCG :mein
grows, if switching time is small. S e -
_151 "g‘"“‘ -©-DCG: 384.97
e - ¢ DCG: 8487.07
- Fidelity improvement by as many , | | | | . .
as 13 orders of magnitude... =55 -5 -4.5 -4 -85 -3 -2.5 -2



CDCGEs in.thelabZ..

Hayes et al, arXiv:1104.1347,
Hayes, Khodjasteh, LV & Biercuk, arXiv:1109.6002.

— Recently implemented Malmer-Sgrensen 'composite’ gate sequences can be interpreted
as CDCGs under a simple error model...

U,lt)= explSy(a(f)a'— a(t)a)]Q, Q=exp|—id(t)S}] Spin-dependent gate

O ot
oft) = 7f()exp[—i(6+A)s]ds A = Detuning error < §

Gate relies on 'disentangling' spin and motional degrees of freedom at ¢, = j27/6 =
—«(t) a)

Residual spin-motional entanglement results in error action —iE ,(t)= S (a(t)a’

— Key simplifications:
(1) Ideal spin-flips (X gates) can be effected:;
(2) Target gate commutes with X;
(3) Error action anti-commutes with X gate =

X Qexp(—iE,) X Qexp(—iE,)=
QZXexp(—iEQ)X exp(—iE,)= 0’

— Ist-order implementation of gate Q? = can iterate 0.7
to achieve higher-order suppression...



Il Progress towards
Optimized




The good... &)

@ CDCGs offer a proof-of-concept that arbitrarily accurate decoherence suppression
solely based on open-loop control is possible in principle.

= Highly portable — only need qualitative knowledge of environment and strechable controls...
= Fully analytical — rigorous performance analysis and [often| physical insight...
= Can concatenate with composite pulses for robustness under systematic control errors...

The bad... (%)

@ [gnoring the system Hamiltonian [driftless assumption| can be a serious oversimplification.
= What if H, is required for universality and synthesizing primitive gates is non-trivial?...
= How to construct balance pairs if the relationship between errors and control is not manifest?...

The ugly...

@ CDCG constructions can be very inefficient...

= Single qubit, n=1: Sequence length grows exponentially with concatenation level...
= Multiple qubits, n: Sequence length typically [also] grows exponentially with system size...

Gm] = Gadvz (Zz x ZZ)Xn = Gadv: 4n’ Ladv:2’ Xadv:4n><5



@ For a given target gate, the actual control outcome is partitioned into ideal and error action:

= Actual gate propagator over duration T

U(T)= Texp{—ifz ds|H,(s)+Hg +H,,| = Qexp(—iE,)
CDCG framework provides a constructive recipe for finding a solution to
(1) Qe'?- Texp{—ifz ds [Hml(s) + HS]} =0 Gate synthesis
(2) mod ,(E,) oc t" + O(t"") Error cancellation

provided that (1) perfect [universal] gate synthesis can be achieved if H, =0, and
(2) a systematic relationship can be found between control and error for each segment.

@ The more detail is available about error model and control specification, the lesser the
need for portable DCG constructions = Optimize for specific control scenarios.

@ Numerically optimized CDCGs: Rely on numerical search methods to solve one/both the
above equations, by restricting solutions [control variables]| within the admissible domain.

= Similar in spirit to strongly modulating pulses, OCT approaches...



Address the two problems separately [for now]| — Problem 1: Retain driftless assumption...

@ Strategy: Exploit freedom in describing control profiles to optimize parametrically EPG.

@ Choose a desired pulse shape and parametrization — e.g., rectangular.
T n n
O(lht,))= Texp{—ifo ds H ,,(s)] = Hz=1 exp|—ih H,1,|, T= Zl=1 T

v Gate synthesis is automatically accommodated.

@ Obtain symbolic expansion of error action E, in terms of perturbative error operators.

v For a given sequence, error can be evaluated parametrically order-by-order.

@ Search numerically for parameters that cancel prefactor for each algebraically independent
term, while implementing desired gating action:

E.g., for 2nd-order DCG: mOdB(E[QZ}) «t +0(t') =

{ZIEmOdB(ES)th Tl =0

The existence of arbitrary-order DCGs guarantees existence of a solution to search problem.

= Explicit expressions for z, and z, depend on problem specification...
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B — Case study: Single qubit coupled to purely dephasing spin bath

N - - N
Herr0r= IS®Zk:1Dkllk'Il+O-Z®Zk:1Ak1kZ’ N=5

Objective: 2nd-order DCGs. Assume rectangular [reversible] profiles.

S Recall:

|ws>=%(|o>+|1>)

B 2_N

]

Pp=

— Analytical generic DCG:
T, = (14+32)20t~3651

— Analytical simplified DCG:
T, = (14+32)8 1~ 1461

= Numerically optimized DCG:

T, ~ 2t

Tt = |G, Ly 43+ (G, — 1) (142" |

OL
5l Uncorrected
s |
510 g
[} r P
"C—U‘ L - »
(o))
w5 A e CDCG, simplified
3
3 Optimized
8-20;
A e CDCG, generic -
R P Q=exp(—i§0x)
R
I "'- Il Il Il I Il Il Il I Il Il Il I
-8 -6 -4 -2

log primitive gate error



Address the two problems separately [for now]| — Problem 2: Focus on first-order DCGs...

@ Strategy: Search for simultaneous solution to gate synthesis and error cancellation conditions.

- Simplest setting: Single qubit, [effectively] closed system, piecewise-const controls:
H,=H+H, +H_,(t)=wo_ +eo +h(t)o,

Relevant to singlet-triplet qubit in DQD: w = magnetic field gradient, 4(r) » exchange splitting
Foletti et al, Nature Phys. 2009; Grace et al, arXiv:1105.2358.

- Drift is required for complete controllability but prevents a simple relationship between
duration of each control segment and associated error action to be found...

v Cannot simply redefine H', . = H, + wc,— need not be small... only x-direction controllable...

Objective: Determine control solution that cancels [minimizes] simultaneously
(1) Fidelity loss in the absence of error (gate synthesis) = z,({1,,7,})=|U .. (T) - Q|

(2) Effect of error Hamiltonian up to the 1st-order in € = ¢ ((n,,7,))=|E}

(Simplest choice) z({h,v))=z, (k) + z,({h;,T,))



lllustrative results

- 'Twice easier' to synthesize gate vs. synthesizing a robust [1st-order DCG]| gate:

Minimization of z, alone = 4 control segments suffice [z,™" = 2.3-1078]

Minimization of z,+z, = At least 8 control segments required [z™" = 2.0- 107

o

-
o

n
tn

-0 optimized gate (4 segments) ‘I:I‘\
—°— robust—optimized gate (8 segments) a

="
O\

no
T

=y
(%))
T

lUg — Uideal ||, distance to target unitary
|Uq — Uideal||, distance to target unitary

O=exp(—i

TT

8

o)

107 10 10°
€, unknown energy shift

¢, unknown energy shift

— 'Flatness' of DCG solution indicates its robustness compared to optimized gate

Optimized gate has higher fidelity in the limit e—0 [e<107"]

DCG provides higher fidelity in awide range e>¢,. e . T=0(z""/z

min
2

)l

e ~107"*

min

|

0.5
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@ DQEC — DD plus CDCGs — has the potential to reduce memory and gate errors

below the level required by accuracy threshold for non-Markovian QEC.
See also Ng, Lidar & Preskill, PRA 2011.

= Make contact with filter-function formalism for classical noise settings...
Green, Uys & Biercuk, arXiv:1110.6686.

= Explore DCGs with continuous driving fields...
Fanchini, Napolitano & Caldeira, arXiv:1005.1666; Chaudhry & Gong, arXiv:1110.4695.

@ Plenty of room exists for improving the efficiency of CDCG constructions and
for optimizing their performance under specific system/control assumptions.
v Single-qubit setting:
= Develop comprehensive numerically-optimized solution, make formal contact with OCT
(analyze complexity, landscape and convergence properties) ...

v Many-qubit setting:
= Need to better exploit locality and sparsity of physical error models...

© Dedicated experimental realizations/benchmarking of DCGs needed...

Stay tuned...
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