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Outline 

•  Introduction to superconducting qubits 

• Adiabatic and sudden two-qubit phase gates 

• GHZ states 

• Efficient Toffoli gate using third-excited state 

• Bit- and phase-flip error correction 

• Outlook 



Superconducting transmon qubits 

C

LC Oscillator 

Theory: Koch, et al.  PRA (2007) 
Experiment: Schreier, et al.  PRB (2009) 
Review: Houck, et al.  Quant. Int. Proc. (2009)  
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Circuit quantum electrodynamics 
Cavity QED Circuit QED 

Couple transmon qubits to superconducting microwave resonator 
• Protection from spontaneous emission 
• Multiplexed qubit drives (single-qubit gates) 
• Couple qubits together (multi-qubit gates) 
• Qubit readout 

H = �⇥r(a†a + 1/2) + �⇥a�z + �g(a†�� + a�+)
Jaynes-Cummings Hamiltonian: 
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Qubit readout 
H = �⇥r(a†a + 1/2) + �⇥a�z + �g(a†�� + a�+)

g ⌧ � = �a � �rDispersive limit: 
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Reed, et al.  Phys. Rev. Lett. 105, 173601 (2010)  
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Three qubits: 
 multiplexed 

State tomography 



Four qubit cQED device 
•  Four transmon qubits coupled to single microwave resonator 

•  Three qubits biased at 6, 7, and ~8 GHz (and one above) 

• Each has a flux bias line to control frequency in nanoseconds 

•  Two qubit gates 
DiCarlo, et al. Nature 467 574 (2010) 



Adiabatic multiqubit phase gates 

|10�

|01�

|11�
|02�

Interactions on two excitation manifold 
give entangling two-qubit conditional phases 

A two qubit phase gate can be written: 

|00⇤ �⇥ |00⇤

|11⇥ � ei(�01+�10+�11)|11⇥

|01⇥ � ei�01 |01⇥
|10⇥ � ei�10 |10⇥

�01 =

Z
�⇥01(t)dt

Top qubit flux bias (a.u.) 

Entanglement! 



⇤11 = �2⇥

Z
�(t)dt

|10�

|11�
|02�

Interactions on two excitation manifold 
give entangling two-qubit conditional phases 

⇣

Can give a universal “Conditional Phase Gate” 

|00⇥ � |00⇥
|01⇥ � |01⇥
|10⇥ � |10⇥
|11⇤ ⇥ �|11⇤

DiCarlo, et al.  Nature 460, 240 (2009) 

�11 = ⇡
�01 = �10 = 0

A two qubit phase gate can be written: 

|00⇤ �⇥ |00⇤

|11⇥ � ei(�01+�10+�11)|11⇥

|01⇥ � ei�01 |01⇥
|10⇥ � ei�10 |10⇥

�01 =

Z
�⇥01(t)dt

|01�

Entanglement! 

Top qubit flux bias (a.u.) 

Adiabatic multiqubit phase gates 



Sudden multiqubit phase gates 
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11

Suddenly move        into resonance with  |11i |02i

|+�

|�⇥

|11i ! | (t = 0)i = |+i+ |�i

| (t)i = ei�t/2|+i+ e�i�t/2|�i
| (t = 2⇡/�)i = �(|+i+ |�i) ! �|11i τ =12 ns

Strauch et al., PRL (2003): proposed this approach 
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Or, transfer to        in 6 ns! |02i



Entangled states on demand 
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DiCarlo, et al. Nature 467 574 (2010) 



GHZ states 
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Properties of GHZ-like states 

ψGHZ =
1
2
000 + 111( ) All ZiZj correlations are +1 

ψQEC =α 000 +β 111 All ZiZj correlations are still 
+1, independent of     and  α β

Flipped  
qubit State Z1Z2 Z2Z3 

None +1 +1 

Q1 -1 +1 

Q2 -1 -1 

Q3 +1 -1 

α 000 +β 111

α 100 +β 011

α 010 +β 101

α 001 +β 110

Each error has a different observable! 
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decode 

Bit-flip error correction circuit 

Nielsen & Chuang Cambridge Univ. Press 

error 

↵|010�+ �|101�↵|111�+ �|101�
= (↵|1⇥+ �|0⇥)� |11⇥

diagnose & fix 
“Toffoli” gate is hard 

0 1α β+

|junk�

|junk�

GHZ state for  
↵|000�+ �|111�

|↵| = |�|

P. Schindler et al.  Science 332 1059 (2011) 

encode 

(measurement-free implementation) 

Toffoli can be constructed with five two-qubit gates, but that’s expensive 

Can we do better? 



Toffoli gate with noncomputational states 
Two-qubit gate requires two excitations |11� � |02�
Three-qubit interaction: third excited state |111� � |003� The essence! 

(mΦ0)

|100〉 ⊗ |1〉

|020
〉

|002〉

|011〉

Sudden transfer: |011i ! |002i
|111i ! |102i

(mΦ0)

|111〉

|201
〉

|210
〉

|30
0〉

|012〉
|200

〉 ⊗
|1〉

|021〉

|120〉

|030〉

|003〉

|102〉

|110〉
⊗ |1〉

Adiabatic interaction: |102i � |003i
Three-qubit phase here! 

This interaction is small, so use intermediary |111i ! |102i � |003i
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Classical output state 
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Classical truth table 

|input⇥ � ˆO � |output⇥
R��/2

xR�/2
x

Classically, a phase gate does nothing.  So we dress it up to make it a CCNOT 

F  = 86% 

How do we prove the gate works?  First, measure classical action 



Quantum process tomography of CCPhase 

Theory 

0.0 

0.6 

0.3 

Experiment 

F  = 77% 4032 Pauli correlation measurements (90 minutes) 

Want to  know the action on superpositions: |input⇥ � ˆO � |output⇥
(but now with 64 basis states) 

�
out

= P (�
in

) =
4

NX

m,n=1

⇥m,nAm�
in

A†
n Invert to find �



Bit-flip error correction with fast Toffoli 

Y

0

0

0 1α β+ 0 1α β+

|junk�

|junk�

Prepare state 

Encode in 
three-qubit 
state 

“Error” rotation 
by some angle 

Decode 
error 
syndromes 

Correct 

Ideally, there should be no dependence of fidelity on the error rotation angle 

|+Xi

Measure single-
qubit state 
fidelity to  |+Xi



Correction fidelity vs. error rotation 
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 Y Error on Q2 uncorrected
 Y Error on Q2
 Z Error on Q1
 Z Error on Q3

No correction 

Error on Q3 

Error rotation (pi) 

Encode, single known error, decode, fix, and measure resulting state fidelity 



Error syndromes 

0 1α β+

|junk�

|junk�
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It is also clear here why you need at least three qubits! 

Look at two-qubit density matrices of            after a full flip |junk�

Is the algorithm really doing what we think? 



Simultaneous phase-flip errors 
More realistic error model: Flip happens with probability p=sin2(   /2) 
Correction only works for single errors. Probability of two or three errors:  3p2 – 2p3 

Depends only quadratically  
on error probability! 

Not corrected: 

Corrected: 

+Z 
+X 
+Y 
-Z 

Phase flip probability 
0.0 1.0 

✓



Conclusions 
• Demonstrated the simplest version of gate-based QEC 

•  Both bit- and phase-flip correction 

•  Not fault-tolerant (gate based, un-encoded) 

• Based on new three-qubit phase gate 
•  Adiabatic interaction with transmon third excited state 
•  Works for any three nearest-neighbor qubits 

•  86% classical fidelity and 77% quantum process fidelity 

Preprint available at arXiv:1109.4948 (accepted to Nature) 



Outlook 
• Concatenating bit and phase flip codes gives full QEC 

•  But requires nine qubits 

•  A logical qubit per cavity with intra-cavity coupling? 

• Planar qubits are not coherent enough 
•  But we’ve made huge progress on that front with a parallel experiment 

(Paik, et. al. arXiv:1105.4652, in the press at PRL) 

•  Three-dimensional architecture yields ~40 times longer qubit lifetimes 
•  Need to re-integrate control knobs (e.g. FBLs) and scale up 
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FIG. 1: Qubit coupled to a 3D cavity (a) Schematic of a transmon
qubit inside a 3D cavity. The qubit is coupled to the cavity through
a broadband dipole antenna that is used to receive and emit photons.
(b) Photograph of a half of the 3D aluminum waveguide cavity. An
aluminum transmon qubit with the dipole antenna is fabricated on a
c-plane sapphire substrate and is mounted at the center of the cav-
ity. (Inset) Optical microscope image of a single-junction transmon
qubit. The dipole antenna is 1 mm long. (c) Transmission of a 3D
cavity (cavity D) coupled to a transmon (J1) measured as a function
of power and frequency. The cavity response above -80 dBm occurs
at the bare cavity frequency fc = 8.003 GHz. At lower powers, the
cavity frequency shifts by g2/d .

n0 is the offset charge.
The experiments are performed using a circuit QED archi-

tecture [12, 13], a circuit implementation of a cavity QED
[14], to isolate, couple, and measure the qubit. A novel aspect
is the use of a three-dimensional waveguide cavity machined
from superconducting aluminum (alloy 6061 T6), as shown
in Fig. 1a-1b. This type of cavity offers several advantages
over the planar transmission-line cavities used in previous cir-
cuit QED experiments. First, the cavity has a larger mode
volume (approximately 3 cm3 or one tenth of a cubic wave-
length, compared to the 10�6 cubic wavelengths for a conven-
tional transmission line resonator), and is much less sensitive
to the surface dielectric losses that are suspected as the lim-
iting source of dissipation in transmission line resonators to
date [15, 16]. Indeed, we have observed reproducible quality
factors of these cavities [17] of 2 to 5 million, corresponding
to photon storage times in excess of 50 µs (not shown) in the
quantum regime (kBT ⌧ h̄wc and hni < 1, where wc is the
cavity frequency), without the power dependence [15, 16] in-
dicative of the presence of two-level systems. Second, the
geometry presents the qubit with a well-controlled electro-
magnetic environment, limiting the possibility of relaxation
through spontaneous emission into the multiple modes that
may be possible with a complicated chip and its associated
wiring [18]. The qubit is placed in the center of the cav-
ity, maximizing the coupling to the lowest frequency TE101

mode at wc/2p ⇠ 8 GHz, which is used for readout and con-
trol. This location also nulls the coupling to the second mode
(TE102 at approximately 10 GHz).

Despite the larger mode volume of the three-dimensional
cavity, we are able to achieve the strong-coupling limit of cav-
ity QED in this system, with vacuum Rabi frequencies, g/2p ,
greater than 100 MHz. As seen in Figure 1b, the electrodes of
the qubit are significantly larger (⇠ 0.5 mm) than in a conven-
tional transmon qubit, so that the increased dipole moment of
the qubit compensates for the reduced electric field that a sin-
gle photon creates in the cavity. We note that due to the large
dipole moment, the expected lifetime from spontaneous emis-
sion in free space would be only ⇠ 100 ns, so that a high-Q
cavity is required to maintain the qubit lifetime. The elec-
trodes also form the shunting capacitance (CS ⇠ 70 fF) of the
transmon, giving it the same anharmonicity and the same in-
sensitivity to 1/ f charge noise as in the conventional design.
An advantage of this qubit design is that the large electrode
size reduces the sensitivity of the qubit to surface dielectric
losses, which may be responsible for the improved relaxation
times. In this experiment, the qubits cannot be tuned into res-
onance with the cavity, so the vacuum Rabi coupling is not
observed directly. The system is rather operated in the dis-
persive limit (|d | = |wc �w01| � g) [13]. Here the qubit in-
duces a state-dependent shift on the cavity, which is the basis
of the readout mechanism. The dispersive shifts are typically
several tens of MHz (see Table 1), and can approach 1,000
times the linewidths of qubit and cavity, so that all devices
are well within the strong dispersive limit [19]. The trans-
mission through the cavity as a function of microwave power,
which demonstrates the ground-state shift of the cavity and
the re-emergence of the bare cavity frequency at sufficiently
high powers (see Ref.[20, 21]) is shown in Figure 1c. Single-
shot readout of the qubit (with fidelities greater than 70%) is
performed using the technique previously described [20].

The dramatically improved coherence properties of these
qubits are confirmed via the standard time-domain measure-
ments of the relaxation time (T1) and Ramsey experiments
(T2) (see Figure 2 and Table 1). We employ the same tech-
niques used in the previous conventional transmon experi-
ment (see Ref.[8, 18, 22]) performed in a cryogen-free dilu-
tion refrigerator at 10 mK. The qubits have an anharmonic-
ity a/2p = f12 � f01 ⇠ �200 MHz to �300 MHz which al-
lows fast single-qubit operations in ⇠ 10 ns. There are several
surprising features in the time-domain data. First, while T2’s
are typically in the range of 15 - 20 µs, they do not yet at-
tain the limit twice T1 which is reproducibly in the range 25
- 50 µs corresponding to Q1= 1 - 2⇥106. This indicates that
there is still significant dephasing. At the same time, both the
Ramsey decay envelope and the echo coherence (which has
an artificial phase rotation as a function of the delay added)
can be fit well by an exponential decay, indicating that con-
trary to the previous predictions [23, 24], 1/ f noise is not
dominant [22] in our experiment. This is consistent with the
expectation that these simple qubits should avoid dephasing
due to both 1/ f flux noise (since there are no superconduct-
ing loops) and charge noise (since the total charge variation
of the transition frequency [9] for these transmon parameters



Preprint: Reed, et al. arXiv:1109.4948 
(accepted to Nature) 

Questions? 



CCNot gate pulse sequence 

More than two times faster than equivalent two-qubit gate sequence 

011
Input state

Output state

101011001110100010000

010
100

110
001

101
111

000
0

ba
1

π/2 π/2π
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Example: extract  

I Z I ZI I Z I Z Z ZZ I I Z Z I ZI Z Z+ + + + + ++

4 ZZZ

no pre-rotation: 
 on Q1 and Q2: 

   on  Q1 and Q3: 
on Q2 and Q3: 

0,
xR
π

0,
xR
π

0,
xR
π

Joint  
Readout 

    
000 000
M ≈

( )xR π

( )xR π
( )xR π

ZZZ

I Z I ZI I Z I Z Z ZZ I I Z Z I ZI Z Z− + + − − +−
I Z I ZI I Z I Z Z ZZ I I Z Z I ZI Z Z+ − − + − +−

I Z I ZI I Z I Z Z ZZ I I Z Z I ZI Z Z− − − − + ++

000 000M =

I Z I ZI I Z I Z ZI Z ZZ I I Z Z I Z Z∝ + + + + + +

Three qubit state tomography 

DiCarlo, et al. Nature 467 574 (2010) 



Toffoli gate with noncomputational states 
Two-qubit gate is conditional because the interaction requires two excitations 

|11� � |02�
A three-qubit interaction would address a third excited state 

|111� � |003�
This interaction is very small, so we use an intermediate state 

|111� � |102� � |003�

This is the essence of the gate! 

Difficulty comes from doing this fast and getting all the two-qubit phases correct 

• One of the two qubit phases isn’t 0, but doesn’t matter for QEC 

|111⇤ ⇥ �|111⇤B. P. Layton, et al.  Nat. 
Phys. 5 134 (2008)   
 
T. Monz, et al.  PRL 
040501 (2009) 
 
Santa Barbara Group 

|others⇥ � |others⇥



Sudden and adiabatic interactions 

(mΦ0)

|100〉 ⊗ |1〉

|020
〉

|002〉

|011〉

(mΦ0)

|111〉

|201
〉

|210
〉

|30
0〉

|012〉
|200

〉 ⊗
|1〉

|021〉

|120〉

|030〉

|003〉

|102〉

|110〉
⊗ |1〉

Adiabatic interaction of 

|102i |003iwith 

generates three-qubit phase 

Sudden transfer of  
|011i ! |002i and 

|111i ! |102i   

How do we prove the gate works? 
Must engineer interaction times correctly and correct a 2Q phase 



Theory 

Quantum process tomography of CCPhase 

0.0 

0.6 

0.3 

Experiment 
F  = 77% 

Operator order: III, XII, YII, ZII, IXI, IYI, IZI, IIX, IIY, IIZ, XXI, XYI, XZI, YXI, YYI, 
YZI, ZXI, ZYI, ZZI, XIX, XIY, XIZ, YIX, YIY, YIZ, ZIX, ZIY, ZIZ, IXX, IXY, IXZ, IYX, IYY, 
IYZ, IZX, IZY, IZZ, XXX, XXY, XXZ, XYX, XYY, XYZ, XZX, XZY, XZZ, YXX, YXY, YXZ, YYX, YYY, 

YYZ, YZX, YZY, YZZ, ZXX, ZXY, ZXZ, ZYX, ZYY, ZYZ, ZZX, ZZY, ZZZ.!

4032 Pauli correlation measurements (90 minutes) 



Quantum process tomography 
Want to fully characterize the gate process – e.g. the action on superpositions 

QPT tells you everything that can be known about a process, given a Hilbert space 

|input⇥ � ˆO � |output⇥

Needs 64 input states, instead of just 8 

�
out

= P (�
in

) =
4

NX

m,n=1

⇥m,nAm�
in

A†
n

Invert this equation to find �

Nielsen & Chuang Cambridge Univ. Press 


