Three-qubit quantum error correction with superconducting circuits

Matt Reed Yale University December 6, 2011 - 10:00 am

Leo DiCarlo Simon Nigg Luyan Sun

Luigi Frunzio Steven Girvin Robert Schoelkopf

Outline

- Introduction to superconducting qubits
- Adiabatic and sudden two-qubit phase gates
- GHZ states
- Efficient Toffoli gate using third-excited state
- Bit- and phase-flip error correction
- Outlook

Superconducting transmon qubits

Circuit quantum electrodynamics

Cavity QED Circuit QED K Circuit QED

Couple transmon qubits to superconducting microwave resonator

- Protection from spontaneous emission
- Multiplexed qubit drives (single-qubit gates)
- Couple qubits together (multi-qubit gates)
- Qubit readout

Jaynes-Cummings Hamiltonian:

$$\mathbf{H} = \hbar\omega_{\mathbf{r}}(a^{\dagger}a + 1/2) + \hbar\omega_{\mathbf{a}}\sigma_{\mathbf{z}} + \hbar g(a^{\dagger}\sigma^{-} + a\sigma^{+})$$

Qubit readout

 $\mathbf{H} = \hbar\omega_{\mathbf{r}}(a^{\dagger}a + 1/2) + \hbar\omega_{\mathbf{a}}\sigma_{\mathbf{z}} + \hbar g(a^{\dagger}\sigma^{-} + a\sigma^{+})$

Dispersive limit: $g \ll \Delta = \omega_a - \omega_r$

 $\mathbf{H} \approx \hbar \left(\omega_{\mathrm{r}} + \frac{g^2}{\Delta} \sigma_{\mathrm{z}} \right) \left(a^{\dagger} a + 1/2 \right) + \hbar \omega_{\mathrm{a}} \sigma_{\mathrm{z}}/2$

Reed, et al. Phys. Rev. Lett. 105, 173601 (2010)

State tomography

Four qubit cQED device

• Four transmon qubits coupled to single microwave resonator

• Three qubits biased at 6, 7, and ~8 GHz (and one above)

- Each has a flux bias line to control frequency in nanoseconds
 - Two qubit gates

DiCarlo, et al. Nature 467 574 (2010)

Adiabatic multiqubit phase gates

Adiabatic multiqubit phase gates

A two qubit phase gate can be written:

$$\begin{aligned} |00\rangle &\longrightarrow |00\rangle \\ |01\rangle &\to e^{i\phi_{01}} |01\rangle \\ |10\rangle &\to e^{i\phi_{10}} |10\rangle \\ |11\rangle &\to e^{i(\phi_{01} + \phi_{10} + \phi_{11})} |11\rangle \end{aligned}$$
Entanglement

Interactions on **two excitation manifold** give entangling two-qubit conditional phases

$$\phi_{11} = -2\pi \int \zeta(t) dt$$

Can give a **universal** "Conditional Phase Gate"

$$\begin{array}{c|c} |00\rangle \rightarrow |00\rangle & & ^{a} \\ |01\rangle \rightarrow |01\rangle & \phi_{01} = \phi_{10} = 0 & ^{a} \\ |10\rangle \rightarrow |10\rangle & \phi_{11} = \pi & ^{a} \\ |11\rangle \rightarrow -|11\rangle & & ^{a} \\ \text{DiCarlo, et al. Nature 460, 240 (2009)} \end{array}$$

Sudden multiqubit phase gates

Suddenly move $|11\rangle$ into resonance with $|02\rangle$

Strauch et al., PRL (2003): proposed this approach

Or, transfer to $|02\rangle$ in 6 ns!

Entangled states on demand

DiCarlo, et al. Nature 467 574 (2010)

GHZ states

DiCarlo, et al. Nature 467 574 (2010)

Properties of GHZ-like states

$$\left|\psi_{GHZ}\right\rangle = \frac{1}{\sqrt{2}} \left(\left|000\right\rangle + \left|111\right\rangle\right)$$

All $Z_i Z_j$ correlations are +1

 $\left|\psi_{QEC}\right\rangle = \alpha \left|000\right\rangle + \beta \left|111\right\rangle$

All $Z_i Z_j$ correlations are still +1, *independent of* α *and* β

Flipped qubit	State	Z ₁ Z ₂	Z_2Z_3
None	$\alpha 000\rangle + \beta 111\rangle$	+1	+1
Q ₁	$\alpha 100\rangle + \beta 011\rangle$	-1	+1
Q ₂	$\alpha 010\rangle + \beta 101\rangle$	-1	-1
Q_3	$\alpha 001\rangle + \beta 110\rangle$	+1	-1

Each error has a different observable!

Bit-flip error correction circuit

(measurement-free implementation)

P. Schindler et al. *Science* 332 1059 (2011)

Nielsen & Chuang Cambridge Univ. Press

Toffoli gate with noncomputational states

Classical truth table

How do we prove the gate works? First, measure classical action

Classically, a phase gate does nothing. So we dress it up to make it a CCNOT

F = 86%

Quantum process tomography of CCPhase Want to know the action on superpositions: $|\text{input}\rangle \rightarrow \hat{O} \rightarrow |\text{output}\rangle$ (but now with **64** basis states) 4^N $\rho_{\text{out}} = P(\rho_{\text{in}}) = \sum \chi_{m,n} A_m \rho_{\text{in}} A_n^{\dagger}$ Invert to find χ m,n=1Theory **Experiment** 0.6 0.3 0.0 Input operator Input operator Output operator Output operator

4032 Pauli correlation measurements (90 minutes)

F = 77%

Bit-flip error correction with fast Toffoli

Ideally, there should be no dependence of fidelity on the error rotation angle

Correction fidelity vs. error rotation

Encode, single known error, decode, fix, and measure resulting state fidelity

Error syndromes

 $|\text{junk}\rangle$

|junk>

Ρ

 $\alpha |0\rangle + \beta |1\rangle$

Is the algorithm really doing what we think? Look at two-qubit density matrices of $|{\rm junk}\rangle$ after a full flip

It is also clear here why you need at least three qubits!

Simultaneous phase-flip errors

More realistic error model: Flip happens with probability $p=\sin^2(\theta/2)$ Correction only works for **single errors**. Probability of two or three errors: $3p^2 - 2p^3$

Conclusions

- Demonstrated the simplest version of gate-based QEC
 - Both bit- and phase-flip correction
 - Not fault-tolerant (gate based, un-encoded)
- Based on new three-qubit phase gate
 - Adiabatic interaction with transmon third excited state
 - Works for any three nearest-neighbor qubits
 - 86% classical fidelity and 77% quantum process fidelity

Preprint available at arXiv:1109.4948 (accepted to Nature)

Outlook

- Concatenating bit and phase flip codes gives full QEC
 - But requires nine qubits
 - A logical qubit per cavity with intra-cavity coupling?
- Planar qubits are not coherent enough
 - But we've made huge progress on that front with a parallel experiment (Paik, *et. al.* arXiv:1105.4652, in the press at *PRL*)
 - Three-dimensional architecture yields ~40 times longer qubit lifetimes
 - Need to re-integrate control knobs (e.g. FBLs) and scale up

50 mm

250 µm

Questions?

Preprint: Reed, et al. arXiv:1109.4948 (accepted to Nature)

CCNot gate pulse sequence

More than two times faster than equivalent two-qubit gate sequence

Three qubit state tomography

 $M = |000
angle\langle000|$

 $\propto \underline{ZII} + \underline{IZI} + \underline{IIZ} + \underline{ZZI} + \underline{ZIZ} + \underline{ZZZ} + \underline{ZZZ}$

Example: extract $\langle ZZZ \rangle$

no pre-rotation: $+\langle ZII \rangle + \langle IZI \rangle + \langle IIZ \rangle + \langle ZZI \rangle + \langle ZIZ \rangle + \langle IZZ \rangle + \langle ZZZ \rangle$ $R_x(\pi)$ on Q1 and Q2: $-\langle ZII \rangle - \langle IZI \rangle + \langle IIZ \rangle + \langle IIZ \rangle - \langle ZIZ \rangle - \langle IZZ \rangle + \langle ZZZ \rangle$ $R_x(\pi)$ on Q1 and Q3: $-\langle ZII \rangle + \langle IZI \rangle - \langle IIZ \rangle - \langle ZII \rangle + \langle ZIZ \rangle + \langle ZZZ \rangle$ $R_x(\pi)$ on Q2 and Q3: $+\langle ZII \rangle - \langle IZI \rangle - \langle IIZ \rangle - \langle ZII \rangle - \langle ZIZ \rangle + \langle IZZ \rangle + \langle ZZZ \rangle$

Toffoli gate with noncomputational states

Two-qubit gate is conditional because the interaction requires two excitations

 $|11
angle \circlearrowright |02
angle$

A three-qubit interaction would address a third excited state

 $|111
angle \circlearrowright |003
angle$ This is the essence of the gate!

This interaction is very small, so we use an intermediate state

 $|111
angle \circlearrowright |102
angle \circlearrowright |003
angle$

Difficulty comes from doing this fast and getting all the two-qubit phases correct

• One of the two qubit phases isn't 0, but doesn't matter for QEC

B. P. Layton, et al. Nat. Phys. 5 134 (2008)

T. Monz, et al. PRL 040501 (2009)

Santa Barbara Group

 $|111\rangle \rightarrow -|111\rangle$ others $\rangle \rightarrow |others \rangle$

Sudden and adiabatic interactions

Must engineer interaction times correctly and correct a 2Q phase How do we prove the gate works?

Quantum process tomography of CCPhase

4032 Pauli correlation measurements (90 minutes)

Operator order: III, XII, YII, ZII, IXI, IYI, IZI, IIX, IIY, IIZ, XXI, XYI, XZI, YXI, YYI, YZI, ZXI, ZYI, ZZI, XIX, XIY, XIZ, YIX, YIY, YIZ, ZIX, ZIY, ZIZ, IXX, IXY, IXZ, IYX, IYY, IYZ, IZX, IZY, IZZ, XXX, XXY, XXZ, XYX, XYY, XYZ, XZX, XZY, XZZ, YXX, YXY, YXZ, YYX, YYY, YYZ, YZX, YZY, YZZ, ZXX, ZXY, ZXZ, ZYX, ZYY, ZYZ, ZZX, ZZY, ZZZ.

Quantum process tomography

Want to **fully** characterize the gate process – e.g. the action on superpositions

QPT tells you everything that can be known about a process, given a Hilbert space

$$|\mathrm{input}
angle
ightarrow \hat{O}
ightarrow |\mathrm{output}
angle$$

Needs 64 input states, instead of just 8

$$\rho_{\text{out}} = P(\rho_{\text{in}}) = \sum_{m,n=1}^{4^N} \chi_{m,n} A_m \rho_{\text{in}} A_n^{\dagger}$$

Invert this equation to find χ

Nielsen & Chuang Cambridge Univ. Press