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Threshold theorem

A quantum computation
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funda aI objections to quantum computation
-it gives Criteria for scalability
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-it Is a benchmark to compare different technologies



Threshold theorem

Theorem proved...

what is left?
-what is the value of the threshold?

-what is the operational cost?

can be as long as re
with any desired gQsu
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-it Is a benchmark to compare different technologies



Ingredients for FTQEC

B Parallel operations
B Good quantum control
B Ability to extract entropy

B Knowledge of the noise

e No lost of qubits

e Independent or quasi independent errors
e Depolarising model

e Memory and gate errors

°...
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B Parallel operations
B Good quantum control
B Ability to extract entropy

B Knowledge of the noise
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and lots of qubits...
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perimental QIP

e Increasing control of qubits

Table 1| Current performance of various qubits

Type of qubit T, Benchmarking (%)  References
One qubit Two qubits

Infrared photon 01ms 0.016 1 20

Trapped ion 15s 048"  07* 104-106

Trapped neutral atom 3s 5 107

Liquid molecule nuclear spins ~ 2s 001" 047t 108

e spinin GaAs quantum dot  3ps 5 43,57

e~ spins bound to 3!P:25S; 06s 5 49

29Sj nuclear spins in 28Si 25s 5 50

NV centre in diamond 2ms 2 5 60, 61, 65

Superconducting circuit 4pus 0.7 10* 73,79, 81, 109

Measured T, times are shown, except for photons where T is replaced by twice the hold-time
(comparable to T;) of a telecommunication-wavelength photon in fibre. Benchmarking values
show approximate error rates for single or multi-qubit gates. Values marked with asterisks are
found by quantum process or state tomography, and give the departure of the fidelity from

100%. Values marked with daggers are found with randomized benchmarking

"0 Other values

are rough experimental gate error estimates. In the case of photons, two-qubit gates fail
frequently but success is heralded; error rates shown are conditional on a heralded success.

NV, nitrogen vacancy.

Ladd, T. D., et al., Nature, 464(7285), 45-53, 2010



Progress in experimental QIP

e # of qubits vs time

yesterday we heard...
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Benchmarking gate

Usually we think of the circcuit model: Prepare a state, com-
pute, measure

|O> — R+ (0)— I M|0> 1)

Other possibility is to use only generators of the Clifford group
(generated by Hadamard, Phase gate and CNOT), with state
preparation and measuremen in the computational basis:

*TT
z2Y_

€

0) ! Moy 1)

I s
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and include the preparation of

1 1
8Y, = 1+——(X+Y+2Z
7/8),0mp = \/g( )



Benchmarking gates
Knill et. al. PRA, 77, 012307, (2008)
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Benchmarking gates

State
Prep.

Fidelity

Meas.

Technology 1 Qubit Gate Error Date
Single Trapped lon 2.0(2) x 107° 2011
Liquid State NMR 1.3(1) x 10—% 2009
Atoms in Optical Lattice 1.4(1) x 10—% 2010
ESR 1.4(2) x 10—% [2011
Trapped lon Crystal 8((1) x 10—% 2009
Single Trapped lon 4.8(2) x 10~3 2008
Solid State NMR 5(2) x 1073|2011
Superconducting Transmon 7(5) x 10—3 2010
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Benchmarking gates

Multi-qubit Comparison
Summary Table

System Error/Fidelty Reference
liquid-state NMR 0.0047 NJP (I2IO (())9I)3034
ion-trap (single) 99.3% Nat. (P;ggs‘)l 463
superconducting 91% Nat“go‘(')g? 240

NV centre 89% SCie“C(; (?()28? 1326
Linear Optics 90% PRL (9236 8;3)0502
Neutral Atoms 73% arx"’(igggg)-5552
ESR 95% Natur(ezg-o585) 1085

A generalisation of the 1 qubit benchmarking can be found in E. Magesan, J. M. Gambetta, and J. Emerson, Phys. Rev. Lett. 106, 180504 (2011).



Characterising noise in . systems

Process tomography:

pr=> AkPiAL = XwiPrpiP
k kl
ired as described by the

(03 [XaxXuXurXaz) [Py)
P | — [ XxaXoXuor Xz | | P

p:f XY,]l XY,X XY,Y XY,Z py
P \XoaXoxXoxXez/ \P./

For n qubits, we need to provide 4™ — 4™ numbers to do so.



Coarse graining

Emerson, Silva, Moussa, Ryan, Laforest,

e We are not interested Baugh, Cory, Laflamme, Science 317, 1893,
. 2007
in all the elements that
describe the full noise D2 ~
superopeartor but only a Alp) = ) ArpA;

[ [ k
coarse graining of them.

e If we are interested in f C
implementing quantum er- s o o)

ror corrrection, we can ask B g B
what is the probability to *.»._;‘ " sl g
get one, or two, or k qubit R W e e
error, independent of the e S W S
location and indepeiideiit W S 8
of the type of error o .. "9=9- -9/
The question is can we do = ssam
this efficiently? F' '\ W /N
e Coarse graining is equiv- Gy &
alent to implement a sym- YL e e
metry.

Schematic illustration of coarse-graining.



1) we don’t want to know which qubit is affected, coarse
grain the position by symmetrising using permutation 7

2) turn the noise into a depolarizing one for each qubit,
coarse grain error type average over SU (2)®"

pr = Xi / dp(U)U'P,Up,UPIU
kl

This is an example of a 2-design, and the integral can be
replaced by a sum

Pf = Z Xkl Z C:;PkCaPiC:;PlTCa
kl x

where C, belongs to the Clifford group ~ SP with

™ ™

P={1,X,Y,Z}, S = {etiX e tY, e 4%}



To estimate the noise, start with the state |000... ), implement
the symmetrisation group and the Clifford group and count how

many bits have been flipped.

A;
(n) — |
1000...>—F— 7 C; A ¢!+ «f ——1010...>
I I
R

If we implement all the elements in the Clifford and permutation group, we would have
an exponential number of terms , but the sum can be estimated by sampling and using

the Chernoff bound. (see Emerson et al. Science 317, 1893, 2007)



Errors in Clifford gates

Adapt the idea for Clifford gates

Practical experimental certification of com-
putational quantum gates via twirling O.

Moussa, M.P. da Silva, C.A. Ryan and R.

Laflamme
0)®" C. —& HC! M,
— |0)®" —C. FHHE HU Ut cl M,

— |0)®" ¢, HU H f(M;,Ci.U) )




Errors in Clifford gates

Use malonic acid in solid state

Em
0.780
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One qubit can be benchmarked
using the Knill procedure: i N
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QEC progress
Liquid state
L Ground breaking (1998)

VOLUME 81, NUMBER 10 PHYSICAL REVIEW LETTERS 7 SEPTEMBER 1998

Experimental Quantum Error Correction
D.G. Cory,' M.D. Price,” W. Maas,? E. Knill,* R. Laflamme,* W.H. Zurek,* T.F. Havel,’ and S.S. Somaroo®
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Error location
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FIG. 3. Experimentally determined entanglement fidelities for
the TCE experiments after decoding (gray) and after decoding
and error correction (black). The relevant coupling frequencies
To: H=3s, C;=1.1s, C2=0.6s
DE: 0.85 — 1.10 t + O(t?)
EC: 0.79 — 0.09 t 4+ O(t?)
= > order of magnitude improvement in 15¢ order.

[m] [ =
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FIG 1 Paametesof thesin ubit, (0 Chenical s shown

nondiagonal terms in e m inset o s molcue suucmn
)Tt n

are measured by the et .wv«y e, Ty’ are
nesnred by th il ccho with one efocuing pole, by ignorng
the strong coupling in the Hamiltonian (1).

PHYSICAL REVIEW A 84, 034303 (2011)

Experimental quantum error correction with high fidelity

Jingfu Zhang,' Dorian Gangloff,"” Osama Moussa,' and Raymond Laflamme'?

o..g ®
ost¢y Qg & o, dat, Cory 4]
o 0| O o, sata,Cory 4]
o G . Cory 4]
o8 o OE. i, Cory 4]
o
0 005 o1 ofs 02 0% o3 0% 0%

K e, average
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- - -FeD, smulaton
ok o1 o 02 om o5 om  os
o)

FIG. 3. (Color online) (a) Experimental results for error correction (EC), decoding (DE), and firee evolution decay (FED). For each delay
time, we take five data points by repeating experiments, shown as e for EC, (O for DE, and A for FED. The averages are shown as x. +, and
«, which can be fitted as 0.9828 — 0.0166r — 0.5380r° + 0.00141* with relative fitting error 0.73%, 0.9982 — 043611 +0.1679¢ +0.2152*
wnh relative fitting error 0.57%, and 1.0056 — 041641 +0.3363:7 — 0.2123¢” with relative fitting error 0.45%, shown as the thick dash-dotted,

ively. The ratios of th 6.2 = 0.3 for DE and EC, and
zs.o 0.3 for FED and EC, respectively. The thin dash-dotted, solid, and dashed curves show the ftting results using the ideal data points from
simulation by introducing factors of 0.983  0.006. 0.998  0.007, and 1.0098 = 0.0064 for EC. DE. and FED, respectively. (b) Results in the
previous experiment [4], shown as the data marked by o and [J for EC and DE, which can be fitted as 0.7895 — 0.0957 — 0.0828¢* +0.0370r*
and 0.8539 — 110217 + 0.8696: + 0.0378:” with relative fitting errors 0.89% and 0.98%, respectively. The ratio of the firt-order decay terms
11502
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1998:

T2: H= 3s ) C1=1.1S, C2=0.65
DE: 0.85 — 1.10 ¢ + O(t2)
EC: 0.79 — 0.09 t + O(t2)

2011:

Ta: H= 1.7s, C;=1.18s, C2=0.45s
DE: 0.99 — 0.436 t 4+ O(t?)
EC: 0.98 — 0.017 t + O(t?)

Comparison:

m Zeroth order improved by ~ 20%

m First order is reduced further, from 11 fold (91% removed) to 26 fold (> 96%

removed)

F =Y p,|Tr[UL UL /N
1
with

U, =U(®t) = e~ Jo (H+ Hint Hiy(2))dt

al




Superconducting qubits: 3 qubit coc

Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits; M. D. Reed et al. arXiv:1109.4948

e Performed both the bit flip and phase flip error correction (in

separate experiments)

10)
¥
10)

b

Process fidelity f

RTPH

1.0

0.8

0.6

04L

0.0L

Phaseflip errors

|
Tomography

® Error correction

02+

o No correction

j f=0.81-0.79p
L —f=0.76-1.46p°+0.72p’
L L

0.0

0.2 04 0.6 0.8
Effective phase-flip probability (p = sin?(6/2))

1.0

e Errors on all three qubits simulta-
neously with z-gates of known ro-
tation angle, which is equivalent
to phase-flip errors with probability
p = sin®(0/2).

e The process fidelity is fit with
f = 0.81 —0.79p without QEC and
f = (0.76+0.005)(1.46+0.03)p*+
(0.72 4+ 0.03)p® with QEC. If a lin-
ear term is allowed, its best-fit co-
efficient is (0.03 & 0.06)p.



PRL 107, 160501 (2011)

PHYSICAL REVIEW LETTERS 14 O mER So11

Demonstration of Sufficient Control for Two Rounds of Quantum Error Correction
in a Solid State Ensemble Quantum Information Processor

Osama Moussa,">* Jonathan Baugh,'* Colm A. Ryan,' and Raymond Laflamme'**

PPS Projector
3QEC

active %) oo Encoding  Err  Decoding  Corr

PPS projector
PPS projector

FIG. 1. Shown are the implemented quantum circuits for:
(a) labeled PPS i a 3QCF is j

by a unitary operation that encodes (and decodes) the labeled
pseudopure state [00)(00]X in the triple quantum coherence
[000)(111] +] 111){000]; (b) the implemented quantum circuit
of a 3-qubit QECC, showing the encoding, decoding, and error-
correction steps. The top two qubits are initialized to the |00)
state, and the bottom qubit carries the information to be encoded.
After the decoding and correction operations, the bottom qubit is
restored to its initial state, while the top two qubits carry
information about which error had occurred; and (c) the proce-
dure for two rounds: U, prepares X, Y, or Z inputs, and Uy =
{11, X1, IX, XX} toggles between the different syndrome subspa-
ces; i.e., the experiment is repeated 4 times, cycling through the
different Uy, and then the results are added, similar to a standard
phase cycling procedure.

kHz| Ci | Co | Cu
€1 ]6.380]0.207 [ 0.780
Ca |-0.025]-1.533] 1.050
C1n ] 0.071 0,042 [-5.650

Intensity [a.u.]

3
e
L
=

0
Frequency [kHz]

FIG. 2. Malonic acid (C3H404) molecule and Hamiltonian
parameters (all values in kHz). Elements along the diagonal
represent chemical shifts, w;, with respect to the transmitter
frequency (with the Hamiltonian Y7, mw; Z;). Above the di-
agonal are dipolar coupling constants (3, 7Di;(2 ZiZ; —
X;X; — Y;Y;), and below the diagonal are J coupling con-
stants, (3,.; 5Ji,(ZiZ; + XiX; + YiY;). An accurate nat-
ural Hamiltonian is necessary for high fidelity control and is
obtained from precise spectral fitting of (also shown) a proton-
decoupled '3C spectrum following polarization-transfer from
the abundant protons. The central peak in each quintuplet is
due to natural abundance '3C nuclei present in the crystal at
~ 1%. (for more details see [7, 10] and references therein.)

DA



K endi
PRL 107, 160501 (2011) PHYSICAL REVIEW LETTERS 143’5;0?;5"{'320”

Demonstration of Sufficient Control for Two Rounds of Quantum Error Correction
in a Solid State Ensemble Quantum Information Processor

Osama Moussa,">* Jonathan Baugh,'* Colm A. Ryan,' and Raymond Laflamme'**

0.8
z
3
£ o6 syndrome signal - 1 round
z 1 o
5 N L
£ N g c . -0
5 04 S g * . . 10
H no encoding N $ .00
= - - quadratic it 3o = -
W ogpl + 3-btQECC—1round N : DY

21~ quacatc 1 round A | IR

% 3Bt QECC — 2 ounds - B TR, %
~  — quadatio it — 2 rounds g 0
o o i
o 5 10 15 20 25 30 35 40 45 50 5 10 15 20 Zi 30 35 40 45 50 Soue.

Interaction period [us]

FIG. 4 (color online). Summary of experimental results for the partial decoupling map the system evolves under the natural
Hamiltonian as well as 70 kHz decoupling fields that partially modulate the (between the carbons and
protons). Shown (on left) are the single-qubit entanglement fidelities in the cases where no encoding is employed (blue dots); or one
round of the 3-bit code (red crosses); or two rounds of the 3-bit code (black asterisks), where the interaction interval is split to two
equal intervals. The dashed lines are quadratic fits to the data and are included to guide the eye. Also shown (on right) is the signal after
one round of error correction as distributed over the various error-syndrome subspaces. In this case, the dominant errors are phase flips
on the top and bottom qubits, which are encoded on C; and C,,, respectively.
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SCIENCE VOL 332 27 MAY 2011 1059
Experimental Repetitive Quantum
Error Correction

Philipp Schindler,” Julio T. Barreiro," Thomas Monz," Volckmar Nebendahl,? Daniel Nigg,"
Michael Chwalla,"* Markus Hennrich,"* Rainer Blatt™*

Cycle 1 Cycle 2 Cycle 3

= sl ]=[]=
sl fHvHE
3 SISl Ms
> SRR [

i}

Fig. 1. (A) Schematic view of three subsequent error-correction cycles. () Quantum circuit for the
implemented phase-flip error-correction code. The operations labeled H are Hadamard gates. (C)
Optimized pulse sequence implementing a single error-correction cycle. (D) Schematic of the reset
procedure. The computational qubit is marked by filled dots. The reset procedure consists of (i) shelving
the population from [0) to Is") = 4S,,,(m; = +1/2) and (ii) optical pumping to |1) (straight blue arrow).

«O» «Fr o«
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SCIENCE VOL 332 27 MAY 2011 1059

Experimental Repetitive Quantum
Error Correction

Philipp Schindler,” Julio T. Barreiro," Thomas Monz," Volckmar Nebendahl,? Daniel Nigg,"
Michael Chwalla,"* Markus Hennrich,"* Rainer Blatt™*

Fig. 2. Mean single-qubit process matrices ¥, (absolute value) for n QEC cycles with single-qubit errors.
Transparent bars show the identity process matrix, and the red bar denotes a phase-flip error. These
process matrices were reconstructed from a data set averaged over all possible single-qubit errors.

Table 1. Process fidelity for a single uncorrected qubit as well as for one, two, and three error-correction
cycles. Frone is the process fidelity without inducing any errors. iy is obtained by averaging over all
single-qubit errors. Fox and Fyp are the respective process fidelities where constant operations are
neglected. The statistical errors are derived from propagated statistics in the measured expectation values
where the numbers in parentheses indicate one standard deviation. Dash entries indicate not applicable.

Number of No error F, Optimized no Single-qubit Optimized

QEC cycles none error Fope errors Fingle single-qubit errors Fqpt
0 97(2) 97(2) = =

1 87.5(2) 90.1(2) 89.1(2) 90.1(2)

2 77.7(4) 79.8(4) 76.3(2) 80.1(2)

3 68.3(5) 72.9(5) 68.3(3) 70.23)

DA



SCIENCE VOL 332 27 MAY 2011 1059

Experimental Repetitive Quantum
Error Correction

Philipp Schindler," Julio T. Barreiro, Thomas Monz," Volckmar Nebendahl,” Daniel Nigg,"
Michael Chwalla, - Markus Hennrich,2* Rainer Blatt*>

e
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1018 £z
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=
S04 .
o9F F~e o s
" 1= -
z ~ i 00 Lt " .
? “F 0.0 0.1 02 0.3 0.4
2 o8} Ss Error probability p
2 S~
@ SS9
<] N
S ~3
o 0.7h RN |
3
B
S
0.6} |
0.0 0.1 0.2 03 04

Error probability p‘

Fig. 3. (A) Probability of simultaneous two-qubit phase flips as a function of the single-qubit phase flip
probabilities for uncorrelated (square) and correlated (circle) noise measured by a Ramsey-type
experiment. (B) Process fidelity of the QEC algorithm in the presence of correlated (circle) and un-
correlated (square) phase noise as a function of the single-qubit phase flip probability. The theory is
shown for an unencoded qubit (solid line), a corrected qubit in presence of correlated (dashed line), and
uncorrelated noise (dash-dot line). Error bars indicate one standard deviation derived from propagated
statistics in the measured expectation values.
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Erasure-correcting code in optics

C-Y Lu et al. Proc. Natl. Acad. Sci. USA 105, 11050-11054 (2008)

Encoding:
0 L — 00 12 —|— 11 12 00 34 —|— |11>34 al0)+B11) [Ho]
1)r, = ({00)12 — [11)12)([00)34 — |]_]_>34 :(O)i Do} T
09 clr -

FIG. 1: A quantum circuit with two Hadamard (Hgq) gates
and three CNOT gates for implementation of the four-qubit
QEEC code. The stabilizer generators of the QEEC code are
XXRX®X and ZRZR® Z® Z, where X (Z) is short
for Pauli matrix o, (0-) [24]. As proposed by Vaidman et al.,
this four-qubit code can also be used for error detection [33].

Test the code with the encoded states
Vit =(HH)23 — |VV)23)(|HH)45 — |VV)45)

+Yr = (|(HHHH )2345 + |VVVV)a345

BB
UV pulse
=

dichroic
mirror

R)r = (|HH)23+ |VV)as)(|HH )45 + |VV)45)+
(IHH)23 — [VV)23)(|HH )45 — [VV)45)

For input states |V'), |+)r and |R)y, the recovery fidelities averaged
over all possible measurement outcomes are found to be 0.832 4- 0.012,
0.764 £ 0.014, and 0.745 4 0.015 demonstrating error correction.



Erasure-correcting code in optics

Error model: random fading,
likely to occur as a result
of time jitter noise or beam
pointing noise in an atmo-
spheric transmission channel
and can be represented by
p = (1 — Pg)loy(a]
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Figure 2 | Results of the deterministic QECC protocol. a, Phase scan of the input coherent state with the excitation |a) = 3 + 3i). b,¢, Phase scans of the
output state measured at HD1 before correction (b) and of the corrected output state (c). d, Histograms of the marginal distributions of the amplitude and
phase quadratures of the joint syndrome measurement (in shot noise units, SNU). Red and blue curves correspond to the marginal distributions for a shot-
noise-limited (SNL) state, whereas the black curves are the best Gaussian fits to the histograms. e, Fidelity is plotted as a function of the displacement gain
with (blue squares) and without (red circles) the use of entanglement. The dashed and solid lines are the theoretically predicted fidelities for O dB and 2 dB
of two-mode squeezing, respectively. The error bars depend on the measurement error, which is mainly associated with the stability of the system over time
and the finite resolution of the analog-to-digital converter. This amounts to an error of +3% for all fidelities.

M. Lassen et al. Nature Photonics 4, 700, 2010
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Figure 1 | Schematics of the experimental QECC set-up. a, The four-mode code s prepared through linear interference at three balanced beamsplitters
(BBS) between the two input states, |a) and [0), and two ancillary squeezed vacuum states. The latter states are produced in two optical parametric
oscillators, OPO 1 and OPO 2, and the coherent state is prepared via a coherent modulation at 5.5 MHz produced by an amplitude (AM) and a phase
modulator (PM). b, The encoded state is injected into four free-space channels that can be independently blocked, thereby mimicking erasures. €, The
corrupted state is decoded, the error is detected by the syndrome measurement (SM) and the state is corrected o pre selected.
The measurement is an entangled measurement in which the phase and amplitude quadratures of the two emerging states are jointly measured (for example,
see ref. 25). The error correcting displacement or post-selection operation is carried out electronically after the measurement of the transmitted quantum
states. These states are measured with two independent homodyne detectors that allow for full quantum state characterization, by scanning the phases (6)
of the local oscillators (LOs) with respect to the phases of the signals. Al erasure events are obtained by blocking the beam paths.

The CV code for protecting
quantum information from
erasures is a four-mode
entangled mesoscopic state
in which two (information-
carrying) quantum states are
encoded with the help of a
two-mode entangled vacuum
state



DFES in neutron interferometry

D. Pushin, et al. PRL 107.150401, 2011

Neutron are great probes to

e characterize magnetic, nu-
clear and structural properties
of materials, protein structures
e can be used on biological or
cold material,

e but they lack robustness

NlSI' Neutron Interferometer and Optics Facility
1

From an information processing point of view:

1

|01) — \/5(|01) + |10)) — «|01) 4+ 3|10)
or in “logical” terms:
1

0L) (10z) + 1)) — of0) + B[1L)

The dominant noise is a phase shift due to rotation around the
vertical axis, i.e. e*?Z



DFES in neutron interferometry

D. Pushin, et al. PRL 107.150401, 2011

In the 4(0[‘ 5)—b|ade case 3-blade Single Crystal Interferometer
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Magic state distillation

Kitaev and Bravyi Phys. Rev. A 71 (2005) 022316
If p has imperfection such as
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Magic state distillation

Use crotonic acid
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Conclusion

In order to implement quantum error correction, we need
e Good knowledge of the noise

e Good quantum control

e Ability to extract entropy

e Parallel operations

We have seen, in the last 4 years, an increased integration of
these requirements, much better control, and operations on
a larger number of qubits.

But it is only the beginning of experimental QEC and its fault
tolerant implementations.
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