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Threshold theorem

Knill et al.; Science, 279, 342, 1998
Kitaev, Russ. Math Survey 1997
Aharonov & Ben Or,  ACM press
Preskill, PRSL, 454, 257, 1998

A quantum computation 
can be as long as required 
with any desired accuracy 
as long as the noise level 
is below a threshold value

 P < 10-6,-5,-4,...,-1?

Significance:
-imperfections and imprecisions are not
 fundamental objections to quantum computation

-its requirements are a guide for experimentalists 
-it is a benchmark to compare different technologies

-it gives criteria for scalability

16
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Ingredients for FTQEC

� Parallel operations

� Good quantum control

� Ability to extract entropy

� Knowledge of the noise

• No lost of qubits

• Independent or quasi independent errors

• Depolarising model

• Memory and gate errors

• . . .
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Progress in experimental QIP
• # of qubits vs time
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• Increasing control of qubits

Ladd, T. D., et al., Nature, 464(7285), 45–53, 2010
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Benchmarking gate

Usually we think of the circcuit model: Prepare a state, com-
pute, measure

R→n (θ)0 M 0 1| | |

Other possibility is to use only generators of the Clifford group
(generated by Hadamard, Phase gate and CNOT), with state
preparation and measuremen in the computational basis:

M 0 1| |
e−iπ

2
Y

e−iπ
2
X

0|

and include the preparation of

|π/8〉, or ρ =
1

2
1l +

1
√

3
(X + Y + Z)
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Fit

f(x) = a*exp(b*x)
     Coefficients (with 95% confidence bounds):
       a =      0.9998  (0.9996, 1)
       b =  −0.0002517  (−0.0002545, −0.000249)
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Figure 4.4: Benchmarking reference simulation, with averaging steps shown individually.
The simulated parameters were 10ns and 20ns π/2 and π pulses, with no pulse spacing,
and a 4µs integration window. In (a), the results of all 640 simulations are plotted, 32
points per length. We see that the distribution very tight. In (b), each length has been
averaged over the 8 Pauli randomizations. At this stage, each randomized sequence can
be inspected for adverse error behaviour. In (c), each length has been further averaged
over the 4 different computational sequences, leaving one point per length. The fit gives a
depolarization parameter of 0.00025, for an average error per gate of 1.3×10−4. (d) shows
a simulated echo from an individual pulse sequence of computational length 96. In the
simulation, the imaginary (red) signals are integrated.
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Benchmarking gates

Multi-qubit Comparison
Summary Table

System Error/Fidelty Reference

liquid-state NMR 0.0047 NJP 11 013034 
(2009)

ion-trap (single) 99.3% Nat. Phys. 4 463 
(2008)

superconducting 91% Nature 460 240 
(2009)

NV centre 89% Science 320 1326 
(2008)

Linear Optics 90% PRL 93 080502
(2004)

Neutral Atoms 73% arXiv:0907.5552 
(2009)

ESR 95% Nature 455 1085 
(2008)



Characterising noise in q. systems
Process tomography:

ρf =
∑
k

AkρiA
†
k =

∑
kl

χklPkρiPl

For one quibt, 12 parameters are required as described by the
evolution of the Bloch sphere:

For n qubits, we need to provide 42n − 4n numbers to do so.



Coarse graining
• We are not interested
in all the elements that
describe the full noise
superopeartor but only a
coarse graining of them.

• If we are interested in
implementing quantum er-
ror corrrection, we can ask
what is the probability to
get one, or two, or k qubit
error, independent of the
location and independent
of the type of error σx,y,z.
The question is can we do
this efficiently?

• Coarse graining is equiv-
alent to implement a sym-
metry.

Emerson, Silva, Moussa, Ryan, Laforest,
Baugh, Cory, Laflamme, Science 317, 1893,
2007



Coarse graining
1) we don’t want to know which qubit is affected, coarse
grain the position by symmetrising using permutation πs

2) turn the noise into a depolarizing one for each qubit,
coarse grain error type average over SU(2)⊗n

ρf =
∑
kl

χkl

∫
dµ(U)U †PkUρiU

†P †
l U

This is an example of a 2-design, and the integral can be
replaced by a sum

ρf =
∑
kl

χkl

∑
α

C†
αPkCαρiC

†
αP †

l Cα

where Cα belongs to the Clifford group ∼ SP with
P = {1l, X, Y, Z}, S = {e−iπ

4
X, e−iπ

4
Y , e−iπ

4
Z}



Coarse graining
To estimate the noise, start with the state |000 . . . 〉, implement
the symmetrisation group and the Clifford group and count how
many bits have been flipped.

ρm σout

m,i,s

(n)

πs Ci Λ C
†
i π†

s

Λi

Λi,s

If we implement all the elements in the Clifford and permutation group, we would have

an exponential number of terms , but the sum can be estimated by sampling and using

the Chernoff bound. (see Emerson et al. Science 317, 1893, 2007)



Errors in Clifford gates

Adapt the idea for Clifford gates

Practical experimental certification of com-

putational quantum gates via twirling O.

Moussa, M.P. da Silva, C.A. Ryan and R.

Laflamme



Errors in Clifford gates
Use malonic acid in solid state

One qubit can be benchmarked
using the Knill procedure:

and Clifford
gates using
the new
procedure

Note: the difference between b) and c)
is improving the pulse (“fixing”)



QEC progress

Liquid state

Ground breaking (1998)
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Quantum error correction is required to compensate for the fragility of the state of a quantum
computer. We report the first experimental implementations of quantum error correction and confirm the
expected state stabilization. A precise analysis of the decay behavior is performed in alanine and a full
implementation of the error correction procedure is realized in trichloroethylene. In NMR computing,
however, a net improvement in the signal to noise would require very high polarization. The experiment
implemented the three-bit code for phase errors using liquid state NMR. [S0031-9007(98)06923-3]

PACS numbers: 03.67.–a, 02.70.–c, 03.65.Bz, 89.70.+c

Quantum computers exploit the superposition principle
to solve some problems much more efficiently than any
known algorithm for their classical counterparts. These
problems include factoring large numbers [1], combina-
torial searching [2], and simulations of quantum systems
[3–5]. Exploiting the power of quantum computation was
thought to be physically impossible due to the extreme
fragility of quantum information [6,7]. This judgment
seems to be overly pessimistic as quantum error-correction
techniques [8–10] were found to protect quantum informa-
tion against corruption. For physically reasonable models
of decoherence [11] a quantum computation can be as long
as desired with arbitrarily accurate answers, provided the
error rate is below a threshold value [12–15]. Thus de-
coherence and imprecision are no longer considered insur-
mountable obstacles to realizing a quantum computer.
The chief remaining obstacle to quantum computing is

the difficulty of finding suitable physical systems whose
quantum states can be accurately controlled. Devices
based on ion traps [16] have so far been limited to two
bits [17]. Recently, liquid state NMR techniques have
been shown to be capable of quantum computations with
three bits [18,19]. Thus it is possible, for the first time, to
implement the simplest quantum error-correcting codes,
and so test these ideas in physical systems.
In room temperature liquid state NMR, one can coher-

ently manipulate the internal states of the coupled spin
1
2

nuclei in each of an ensemble of molecules subject to a
large external magnetic field. Although the set of acces-
sible states is highly mixed, it has been shown that ex-
perimental methods exist that can be used to isolate the
pure state behavior of the system, thus permitting lim-
ited application of NMR to quantum computation [20,21].
A detailed description of these methods can be found in
[11]. Here we describe the implementation of a quan-
tum error-correcting code which compensates for small
phase errors. The behavior of this code was measured
for two systems: The 13C labeled carbons in alanine sub-

ject to the correlated phase errors induced by diffusion
in a pulsed magnetic field gradient, and the proton and
two labeled carbons in trichloroethylene (TCE) subject to
its natural relaxation processes. In alanine, we observed
correction of first-order errors using a precise analysis of
the decay behavior of a given input state. The full error-
correction procedure (including the final Toffoli gate) was
implemented in TCE to demonstrate the expected state
preservation of an arbitrary coherent input.
Although our experiments validate the usefulness of

error correction for quantum computing with pure states,
there is a substantial loss of signal associated with the
use of ancilla spins in weakly polarized systems. We
argue that in this setting, the loss of signal involved in
exploiting ancillas removes any advantage for computation
gained by error correction, at least unless the system is
sufficiently polarized to enable the generation of nearly
pure states. Nevertheless, our experiments demonstrate
that error-correcting codes can be implemented, and that
they behave as predicted.
The simple three-bit quantum error-correcting code used

here is designed to compensate to first order for small
random phase fluctuations. These fluctuations constitute
a random evolution of the state

jb1b2b3! ! e2i"u1s1
z 1u2s 2

z 1u3s 3
z #jb1b2b3!

! ei$"21#b1 u11"21#b2 u21"21#b3 u3%jb1b2b3! , (1)

where bi is 0 or 1, ui is a random phase variable, and s i
z is

the Pauli matrix acting on the ith spin. The ui depend
on the error rates in the model, which is described in
detail below.
The error-correcting code is a phase variant of the

classical three-bit majority code with a decoding tech-
nique that preserves the quantum information in the en-
coded state [9]. Let j6! ! "j0! 6 j1!#&

p
2. The state

"aj000! 1 bj100!# is encoded as aj111! 1 bj222!
by a unitary transformation. The first-order expansion of
the operator in Eq. (1) in the small random phases is

2152 0031-9007&98&81(10)&2152(4)$15.00 © 1998 The American Physical Society
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FIG. 3. Experimentally determined entanglement fidelities for
the TCE experiments after decoding (gray) and after decoding
and error correction (black). The relevant coupling frequencies
are 200.7 Hz between H and C1, and 103.1 Hz between C1 and
C2. The pulse sequences for encoding, decoding, and error
correction take about 35 ms. In this experiment the Toffoli
gate was realized by a set of pulses. The histogram represent
the fidelities when a single sign flip error has been induced on
H, C1, or C2 clearly exhibiting the improvement from error
correction. The graph shows continuous curves interpolating
the data points. The broken curves were determined by
simulating the pulse sequence using the measured coupling
constants and estimated T2’s of 1.1 s (C1), 0.6 s (C2), and 3 s
(H). Differences between experimental and theoretical curves
are attributed to lack of precise knowledge of the error model.
Errors in the data points are approximately 0.05. Note that
since the proton T2 is much longer than that of the carbons,
the long term gain in fidelity is partially due to recovery
of polarization from the proton. The demonstration of error
correction lies in the initial slope. The curves show that error
correction decreases the initial slope by a factor of !10 (by
least squares fit to the logarithm).

problem is the inability to reuse ancilla bits. This has

two consequences. The first is that decoherence rapidly

removes information in the state, leading to computations

which are logarithmically bounded in time [30]. Second,

the total number of ancillas required is proportional to the

time-space product of the computation, rather than to a

power of its logarithm.

Our work shows that liquid state NMR can be used to

test fundamental ideas in quantum computing. Our ex-

periments demonstrate for the first time the state pre-

serving effect of the three-bit phase error-correcting code.

The first-order behavior was established to high accuracy

for a specific state in alanine, while the overall effect was

observed and the improvement in state recovery verified

in TCE. These experiments confirm not only the validity

of theories of quantum error correction in a simple case,

but also demonstrate the ability, in liquid state NMR, to

control the state of three spin-half particles. This is an

important advance for quantum computing, as this is the

first system where this degree of control has been success-

fully implemented.

We thank Jeff Gore for his help with the simulations.
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Experimental quantum error correction with high fidelity
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More than ten years ago a first step toward quantum error correction (QEC) was implemented [Phys. Rev. Lett.
81, 2152 (1998)]. The work showed there was sufficient control in nuclear magnetic resonance to implement
QEC, and demonstrated that the error rate changed from ε to ∼ε2. In the current work we reproduce a similar
experiment using control techniques that have been since developed, such as the pulses generated by gradient
ascent pulse engineering algorithm. We show that the fidelity of the QEC gate sequence and the comparative
advantage of QEC are appreciably improved. This advantage is maintained despite the errors introduced by the
additional operations needed to protect the quantum states.

DOI: 10.1103/PhysRevA.84.034303 PACS number(s): 03.67.Lx

I. INTRODUCTION

Quantum computers could solve some problems faster than
classical computers [1]. Performing a quantum computation
relies on the ability to preserve the coherence of quantum
states long enough for gates composing the algorithm to be
implemented. In practice, the quantum coherence is sensitive
to the uncontrolled environment and easily damaged by the
interactions with the environment, a process called decoher-
ence [2]. To protect the fragile quantum coherence needed for
quantum computation, schemes of quantum error correction
(QEC) and fault-tolerant quantum computation have been
developed [3].

The 3-bit QEC code was implemented in a liquid-state
nuclear magnetic resonance (NMR) quantum information
processor in 1998 as the first experimental demonstration of
QEC [4]. More recently, it has been implemented in trapped-
ion and solid-state systems [5,6]. Here we report on using the
gradient ascent pulse engineering (GRAPE) algorithm [7] to
implement a high-fidelity version of the 3-bit QEC code for
phase errors in liquid state NMR. The errors due to natural
transversal relaxation are shown to be suppressed to a first
order. In comparison with the work performed in 1998 [4],
the pulse sequence fidelity is improved by about 20%, and
the reduction of the first order in the decay of the remaining
polarization after error correction is improved by a factor of
∼2.3. The advantage of the QEC is obtained although the
extra operations for protecting the quantum states in QEC are
subject to errors in implementation.

II. EXPERIMENTAL PROCEDURE AND RESULTS

In the current implementation, we use 13C labeled
trichloroethylene (TCE) dissolved in d-chloroform as the
sample. Data were taken with a Bruker DRX 700 MHz
spectrometer. The structure of the molecule and the parameters
of the spin qubits are shown in Fig. 1, where we denote H as
qubit 1, C1 as qubit 2, and C2 as qubit 3. The Hamiltonian of

*Current address: Department of Physics Massachusetts Institute of
Technology, Cambridge, MA 02139.

the three-spin system can be written as

H = −π

3∑

i=1

νiZi + π

2
[J12Z1Z2 + J13Z1Z3

+ J23(X2X3 + Y2Y3 + Z2Z3)], (1)

where Xi , Yi , and Zi denote the Pauli matrices with i indicating
the spin location, νi denotes the chemical shift of spin i, and
Jij denotes the spin coupling between spins i and j . The
two carbon spins are treated in the strongly coupled regime,
because the difference in frequencies between the two carbons
is not large enough for the weak-coupling approximation [8].

We exploit radio-frequency (rf) spin selection techniques
to improve the linewidth, and hence the coherence, of the en-
semble qubits [9,10]. The effect of pulse imperfections due to
rf inhomogeneities is reduced by spatially selecting molecules
from a small region in the sample through the rf power. We
choose C1 as the qubit to carry the state for encoding and the
output state after decoding and error correction. The labeled
pseudopure states 0X0 and 0Y0, used as the reference states
with blank ancilla, are prepared by the circuit in Ref. [10],
where the order is arranged as qubits 1 to 3 and 0 ≡ |0〉〈0|.
The qubit readout is performed on C1, and the signals are nor-
malized with respect to 0X0 or 0Y0, for different input states.

The quantum network used for implementing the QEC code
is shown in Fig. 2(a), where ρin is chosen as X, Y , and Z, in
separate sequences. We optimize the encoding operation and
the decoding operation combined with the error correction as
two GRAPE pulses [7] with theoretical fidelity >99.9%. To
test the ability of the code to correct for the natural dephasing
errors due to the transversal relaxation of the spins, the
internal spin Hamiltonian (1) is refocused during the time delay
implemented between the encoding and decoding processes.
The refocusing pulse sequence is shown in Fig. 2(b), where
the selective π pulses applied to spin H are hard rectangle
pulses with a duration of 20 µs, while the π pulses applied to
C1 or C2 are GRAPE pulses with a duration of 2 ms. Taking
into account the strong coupling in the Hamiltonian (1), we
choose the phases of the π pulses shown in Fig. 2(b) to obtain
a fidelity |Tr{UrefocusE}|/8 > 99.96%, where Urefocus denotes
the simulated unitary implemented by the pulse sequence, and
E denotes the identity operation.

034303-11050-2947/2011/84(3)/034303(4) ©2011 American Physical Society
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(a)

(b)

FIG. 1. Parameters of the spin qubits. (a) Chemical shifts shown
as the diagonal terms and the couplings between spins shown as the
nondiagonal terms in Hz. The inset shows the molecule structure
where the three qubits are H, C1, and C2. (b) The relaxation times T1

are measured by the standard inversion recovery sequence. T2’s are
measured by the Hahn echo with one refocusing pulse, by ignoring
the strong coupling in the Hamiltonian (1).

We choose the input states as ρin = X, Y , and Z, and
measure the polarization that remains after error correction
in ρout. The polarization ratios are denoted as fx , fy , and fz.
We use “entanglement fidelity,” represented as

f = (1 + fx + fy + fz)/4, (2)

(a)

(b)

FIG. 2. (Color online) Quantum network for quantum error
correction (a) where the T2 noise is introduced by a variable time delay
implemented by the pulse sequence (b) which refocuses the evolution
of the Hamiltonian (1) to an identity operation with theoretical fidelity
higher than 99.96%. In (b) the unfilled rectangle represents a hard π

pulse with duration of 20 µs. The filled rectangle represents a GRAPE
π pulse selective for C1 or C2 with duration of 2 ms. The phases of
the pulses are denoted above the rectangles.

to characterize how well the quantum information in ρin is
preserved [11].

The experimental results for QEC are shown in Fig. 3(a).
For each delay time, five experiments are repeated in order
to average the random experimental errors in implementation.
The results of error correction (EC) are represented by •. By
averaging the points for each delay time, we obtain the aver-
aged entanglement fidelity f shown as ×, which can be fitted to
0.9828 − 0.0166t − 0.5380t2 + 0.0014t3 with relative fitting
error 0.73%, shown as the thick dash-dotted curve.

In order to estimate the performance of the error correction
for the encoded states, we calculate the entanglement fidelity of
decoding (DE) through measuring the remaining polarization
before the application of the Toffoli gate, used as the error-
correcting step. In this case, the decoding operation is imple-
mented by one GRAPE pulse with theoretical fidelity >99.9%.
Similar to the measurement for error correction, we also repeat
five experiments for each delay time. The results are shown as
© in Fig. 3(a), and the data points after average are marked
by +, which can be fitted as 0.9982 − 0.4361t + 0.1679t2 +
0.2152t3 with relative fitting error 0.57%, shown as the thick
solid curve. Here the ratio of the first-order decay terms for
the two fits is found to be 26.2 ± 0.3. The important reduction
of the first-order decay term indicates the high quality of state
stabilization provided by QEC. As a comparison, we include
the experimental data from Ref. [4], which are marked as $
and ! in Fig. 3(b) for the results of QEC and decoding. The
data can be fitted as 0.7895 − 0.0957t − 0.0828t2 + 0.0370t3

and 0.8539 − 1.1021t + 0.8696t2 + 0.0378t3 with relative
fitting errors 0.89% and 0.98%, respectively. The ratio of the
first-order decay terms is 11.5 ± 0.2.

In implementing the QEC code, the operations associated
with encoding, decoding, and error correction are subject to
errors, which would lower the ability of the code to protect
the quantum states. To estimate the effects of the errors, we
measure the free evolution decay (FED) of ρin under the
refocusing sequence shown in Fig. 2(b). Five experiments are
repeated for each delay time, and the experimental data for
f are shown as % in Fig. 3(a). The averaging points, shown
as #, can be fitted as 1.0056 − 0.4164t + 0.3363t2 − 0.2123t3

with relative fitting error 0.45%, shown as the dashed curve.
The ratio of the first-order decay terms in the fits of FED
and EC is 25.0 ± 0.3. Through comparing the results of
QEC and FED, one can find that the errors removed by the
QEC code can exceed the errors introduced by the extra
operations required by the code for delay time >0.0672 s
(∼6% of C1’s T2).

III. DISCUSSION

The pulse durations for encoding, decoding, and the combi-
nation of decoding and error correction are 8, 8, and 13.6 ms,
respectively. We exploit the results from simulation with ideal
pulses to estimate the errors due to the imperfection in pulse
implementation. In simulation, we choose an uncorrelated
error model for T2 errors and ignore T1 errors [12]. We
represent the measured fidelity as f = Afideal, where fideal
denotes the ideal fidelity by simulation and A denotes a factor
to estimate the deviation between experiment and simulation.
One should note that the theoretical entanglement fidelity of
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FIG. 3. (Color online) (a) Experimental results for error correction (EC), decoding (DE), and free evolution decay (FED). For each delay
time, we take five data points by repeating experiments, shown as • for EC, © for DE, and " for FED. The averages are shown as ×, +, and
!, which can be fitted as 0.9828 − 0.0166t − 0.5380t2 + 0.0014t3 with relative fitting error 0.73%, 0.9982 − 0.4361t + 0.1679t2 + 0.2152t3

with relative fitting error 0.57%, and 1.0056 − 0.4164t + 0.3363t2 − 0.2123t3 with relative fitting error 0.45%, shown as the thick dash-dotted,
solid, and dashed curves, respectively. The ratios of the first-order decay terms in the fitted curves are calculated as 26.2 ± 0.3 for DE and EC, and
25.0 ± 0.3 for FED and EC, respectively. The thin dash-dotted, solid, and dashed curves show the fitting results using the ideal data points from
simulation by introducing factors of 0.983 ± 0.006, 0.998 ± 0.007, and 1.0098 ± 0.0064 for EC, DE, and FED, respectively. (b) Results in the
previous experiment [4], shown as the data marked by % and ! for EC and DE, which can be fitted as 0.7895 − 0.0957t − 0.0828t2 + 0.0370t3

and 0.8539 − 1.1021t + 0.8696t2 + 0.0378t3 with relative fitting errors 0.89% and 0.98%, respectively. The ratio of the first-order decay terms
is 11.5 ± 0.2.

DE is the same as FED [12]. By fitting the data, we obtain
A = 0.983 ± 0.006, 0.998 ± 0.007, and 1.0098 ± 0.0064 for
EC, DE, and FED, respectively. The fitting results are shown as
the thin dash-dotted, solid, and dashed curves in Fig. 3(a). From
the simulation results, we estimate the errors in implementing
the operations associated with the QEC codes are about 1.2%
for DE and 2.7% for EC.

IV. CONCLUSION

We optimize the encoding, decoding, and error correction
as GRAPE pulses with high theoretical fidelities (>99.9%).
The refocusing sequence is exploited to suspend the evolution
of the Hamiltonian (1) with high fidelity (>99.96%). The
quality of readout signals is further improved by rf selection.
Compared with the experimental results of QEC obtained in
1998 [4], the pulse sequence fidelity is improved by about
20%. By the comparison with the free evolution decay, one
can benefit from QEC even when errors exist in implementing
the operations required for QEC. The improvement provided

by the error correction is also demonstrated by the reduction
of the first order in the decay of the remaining polarization
after error correction, compared with the decay of the encoded
states recovered by decoding and free evolution decay of the
input states. The “QEC advantage” for the encoded states
is improved by a factor of ∼2.3 from the 1998 result. In
the current experiment, the second-order term in the decay
after error correction is larger than the previous experiment
because of the larger phase errors due to the shorter T2 time
constants [see Fig. 1(b)], noting that T2’s are 3 s for H, 1.1 s
for C1, and 0.6 s for C2 in the previous experiment [4]. The
experimental errors arise mainly from the imperfection in im-
plementing the GRAPE pulses. Additionally, inhomogeneities
of magnetic fields and the limitation of T1 also contribute to
errors.
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Summary

1998:
T2: H= 3s , C1=1.1s, C2=0.6s
DE: 0.85− 1.10 t+O(t2)
EC: 0.79− 0.09 t+O(t2)

2011:
T2: H= 1.7s , C1=1.18s, C2=0.45s
DE: 0.99− 0.436 t+O(t2)
EC: 0.98− 0.017 t+O(t2)

Comparison:

Zeroth order improved by ∼ 20%

First order is reduced further, from 11 fold (91% removed) to 26 fold (> 96%
removed)



Superconducting qubits: 3 qubit code
Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits; M. D. Reed et al. arXiv:1109.4948

• Performed both the bit flip and phase flip error correction (in
separate experiments)

• Errors on all three qubits simulta-
neously with z-gates of known ro-
tation angle, which is equivalent
to phase-flip errors with probability
p = sin2(θ/2).
• The process fidelity is fit with
f = 0.81−0.79p without QEC and
f = (0.76±0.005)(1.46±0.03)p2+
(0.72 ± 0.03)p3 with QEC. If a lin-
ear term is allowed, its best-fit co-
efficient is (0.03 ± 0.06)p.



QEC progress

SSNMR

Control for two rounds (2011)

Demonstration of Sufficient Control for Two Rounds of Quantum Error Correction
in a Solid State Ensemble Quantum Information Processor

Osama Moussa,1,2,* Jonathan Baugh,1,3 Colm A. Ryan,1,2 and Raymond Laflamme1,2,4

1Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
2Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

3Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
4Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2J 2W9, Canada

(Received 10 February 2011; published 10 October 2011)

We report the implementation of a 3-qubit quantum error-correction code on a quantum information

processor realized by the magnetic resonance of carbon nuclei in a single crystal of malonic acid. The

code corrects for phase errors induced on the qubits due to imperfect decoupling of the magnetic

environment represented by nearby spins, as well as unwanted evolution under the internal Hamiltonian.

We also experimentally demonstrate sufficiently high-fidelity control to implement two rounds of

quantum error correction. This is a demonstration of state-of-the-art control in solid state nuclear magnetic

resonance, a leading test bed for the implementation of quantum algorithms.
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Introduction.—One of the crucial requirements [1] for
universal quantum information processing (QIP) is the
ability to protect the fragile quantum information during
computation—either by encoding the information in sub-
spaces of the system’s Hilbert space where it is protected
from degradation by noise or by an active scheme that
detects and rectifies errors continuously or periodically.
This latter, active technique has been experimentally real-
ized in liquid state NMR [2–4] and ion-trap [5] implemen-
tations of a quantum information processor. In each of
these cases, a quantum error-correction code (QECC)
was used to protect against the particular errors present
in the respective systems, and it was shown that, even with
imperfect encoding and recovery operations, employing
quantum error correction is advantageous. Obviously, there
is a limit to how many control errors can be tolerated
before they overwhelm the error-correction protocol.
Thus, the ability to demonstrate error correction is a highly
relevant benchmark of high-fidelity coherent control.

A natural question to ask is whether one has high-
enough-fidelity control to perform multiple rounds of error
correction, as would be required in a realistic computation.
Of course, to usefully performmultiple rounds, one needs a
fresh supply of sufficiently pure ancillæ to ensure that
entropy flows in the proper direction. However, assuming
we have a fresh supply of ancillæ, is it possible, with the
current level of control, to perform meaningful multiple
rounds of quantum error correction?

In this Letter, we report on the implementation of a
3-qubit QECC that corrects phase errors induced by the
environment in a single-crystal solid state NMR system.
We also devise a way to experimentally determine the
entanglement fidelity of multiple back-to-back rounds of
error correction and use it to determine the entanglement
fidelity of two rounds of the 3-bit phase code. In light of

recent work on the characterization and control of such
systems [6–8], as well as state initialization [9,10], this
current Letter signifies an advancement of one of the
leading test beds for QIP ideas. The rest of this Letter is
organized as follows. First, we describe the solid state
NMR system and the sources of noise affecting the qubits.
We then describe the QECC implemented and show the
results from one and two rounds.
System and error models.—Building on the success of

liquid state NMR as a test bed of QIP ideas, solid state
NMR systems offer [7,11] intrinsically larger couplings,
longer coherence times, the ability to pump entropy out of
the system of interest into a spin bath, and the potential for
much higher initial polarizations. This comes at the cost of
a more complicated internal Hamiltonian, which makes the
system harder to control in practice.
The computational register under investigation is an

ensemble of molecular nuclear spins in a macroscopic
single crystal of malonic acid (C3H4O4). A small fraction
(" 3%) of the molecules is triply labeled with (spin- 12 )

13C
to form an ensemble of processor molecules, spatially
buffered from one another by molecules of the same com-
pound but with natural abundance (" 1%) carbon nuclei.
During computation, the processors are decoupled from the
100% abundant spin- 12 protons in the crystal by applying a
decoupling pulse sequence [12] to the protons. For this
3-qubit register, (dephasing) noise comes in the following
forms: (i) Coherent phase errors due to pulse implementa-
tion errors, phase transients, or unwanted evolution under
the natural Hamiltonian (e.g., under the Zeeman term).
These are unitary errors (that cause no loss of coherence)
and can therefore be inverted if tracked properly, but, in case
tracking that evolution is not possible, quantum error
correction becomes a valuable tool. (ii) Incoherent
phase errors due to Zeeman-shift dispersion or other
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inhomogeneities. The loss of coherence is over the en-
semble; eachmember of the ensemble sees a different value
for some coupled classical degree of freedom. Errors of this
nature have been dealt with using refocusing techniques
(e.g., spin echo) or by carefully designing the control fields
to generate the same evolution over the ensemble distribu-
tion of the inhomogeneous parameter. Quantum error cor-
rection can be usedwith, or in lieu of, these other techniques
to improve robustness to ensemble errors. (iii) Decoherent
phase errors due to a coupling between the system of
interest and environment—an uncontrollable quantum de-
gree of freedom—and loss of coherence occurs when this
environment is traced over after the interaction.

3-bit code.—The 3-bit repetition code was introduced by
Shor [13] as part of a 9-qubit code that is able to protect
against an arbitrary single-qubit error. The phase variant
[14] of the 3-bit repetition code encodes a single qubit in
three qubits as follows:

j0i ! j!0i ¼ jþþþi; j1i ! j!1i ¼ j###i; (1)

where j$i ¼ j0i$ j1i and the logical bases are denoted by
fj!0i; j!1ig. In the stabilizer formalism [15,16], the stabilizer
group generators for this code are fXXI; IXXg. This code
can be employed to correct for various sets of errors by
choosing different decoding circuits—for this work, we
design the decoding to correct for errors generated by the
set E ¼ fZII; IZI; IIZ; IIIg. That is to say, with the same
decoding circuit, the code corrects a coherent selective
phase rotation on one of the qubits,

Z!
1
:¼ e#i!=2ZII ¼ cosð!=2ÞIII# i sinð!=2ÞZII;

and/or the dephasing map on one of the qubits, due to
incoherent or decoherent errors:

"!ð"Þ ¼ cos2ð!ÞI"I þ sin2ð!ÞZ"Z:
A quantum circuit that accomplishes [14] the encoding,

decoding, and error-correction steps is shown in Fig. 1(b).
The encoding process takes a qubit in the state #j0iþ$j1i,
as well as two ancillary qubits prepared in the j00i state,
and outputs the 3-qubit encoded state #jþþþiþ $j#
##i. After the error channel, the recovery process decodes
the state on the information-carrying qubit, and the other
qubits carry syndrome information about the errors that
have occurred. The nondegeneracy of the code implies that
each of the error bases, in E, will leave a particular sig-
nature. It is straightforward to show that syndromes 00, 10,
01, and 11 correspond to the occurrence of errors III, ZII,
IZI, and IIZ, respectively.

The figure of merit used herein to judge the performance
of the code is the entanglement fidelity [17]. In particular,
we use the expression for the single-qubit average entan-
glement fidelity, which is experimentally accessible by
measuring the fraction of surviving signal given input
states X, Y, and Z [18].

Experiment.—The experiments were performed in a
static field of 7.1 T using a purpose-built NMR probe.

Shown in Fig. 2 is a proton-decoupled 13C spectrum,
following polarization transfer from the abundant protons,
for the particular orientation of the crystal used in this
experiment. A precise spectral fit gives the Hamiltonian
parameters (listed in the inset table in Fig. 2), as well as the
free-induction dephasing times, T'

2 , for the various transi-
tions; these average at (2 ms. The dominant contribution
[7] to T'

2 is the Zeeman-shift dispersion, which is largely
refocused by the control pulses. Other contributions are
from intermolecular 13C-13C dipolar coupling and, particu-
larly for Cm, residual interaction with neighboring protons
due to imperfect decoupling. The carbon control pulses are
numerically optimized to implement the required unitary
gates using the gradient ascent pulse engineering [19]
algorithm. A typical pulse is 1 ms long and is designed
[20] to have an average Hilbert-Schmidt fidelity of 99:8%
over appropriate distributions of Zeeman-shift dispersion
and control-fields inhomogeneity.
The system is initially prepared in the labeled pseudopure

state (PPS) [21–23]—expressed in the product opera-
tor formalism—"i ¼ 1

8 ½III þ %ðIþ ZÞðI þ ZÞX*, where

%( 10#5. The completely mixed component is ignored
for the rest of the discussion, as it does not participate in
the unital dynamics. This preparation is achieved by control
pulses and phase cycling (temporal averaging) and can be
thought of as a projection along ðIþZÞðIþZÞX.

FIG. 1. Shown are the implemented quantum circuits for:
(a) labeled PPS preparation procedure: a 3QCF is conjugated
by a unitary operation that encodes (and decodes) the labeled
pseudopure state j00ih00jX in the triple quantum coherence
j000ih111jþj 111ih000j; (b) the implemented quantum circuit
of a 3-qubit QECC, showing the encoding, decoding, and error-
correction steps. The top two qubits are initialized to the j00i
state, and the bottom qubit carries the information to be encoded.
After the decoding and correction operations, the bottom qubit is
restored to its initial state, while the top two qubits carry
information about which error had occurred; and (c) the proce-
dure for two rounds: Up prepares X, Y, or Z inputs, and Us ¼
fII; XI; IX; XXg toggles between the different syndrome subspa-
ces; i.e., the experiment is repeated 4 times, cycling through the
different Us, and then the results are added, similar to a standard
phase cycling procedure.
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FIG. 2. Malonic acid (C3H4O4) molecule and Hamiltonian
parameters (all values in kHz). Elements along the diagonal
represent chemical shifts, ωi, with respect to the transmitter
frequency (with the Hamiltonian

∑
i πωiZi). Above the di-

agonal are dipolar coupling constants (
∑

i<j πDi,j(2 ZiZj −
XiXj − YiYj), and below the diagonal are J coupling con-
stants, (

∑
i<j

π
2
Ji,j(ZiZj + XiXj + YiYj). An accurate nat-

ural Hamiltonian is necessary for high fidelity control and is
obtained from precise spectral fitting of (also shown) a proton-
decoupled 13C spectrum following polarization-transfer from
the abundant protons. The central peak in each quintuplet is
due to natural abundance 13C nuclei present in the crystal at
∼ 1%. (for more details see [7, 10] and references therein.)

the unital dynamics. This preparation is achieved by con-
trol pulses and phase cycling (temporal averaging), and
can be thought of as a projection along (I +Z)(I +Z)X.

As shown in Figure 1-a, the phase cycling actuates a
triple-quantum-coherence filter (3QCF) [24] by exploit-
ing the n-proportional phase acquisition of n-coherence
quantum states under Z-rotation. And conjugating the
3QCF with transformations that encode (and later de-
code) the (I + Z)(I + Z)X coherence in the triple-
quantum-coherence, |000〉〈111| + |111〉〈000|, realizes an
effective projector on the labelled-PPS.

We first examine the performance of the 3-bit phase
code under the natural evolution of the system: between
the encoding and recovery operations, the system is left
to evolve unobstructed under the full natural Hamilto-
nian, both homonuclear and heteronuclear parts. Exag-
gerated as it is, this is a useful test of the code’s abil-
ity to correct for coherent errors from uncertainties in
the natural Hamiltonian, or imperfect decoupling of the
magnetic environment. The experimentally determined
entanglement fidelities are shown in Figure 3, demon-
strating the advantage of quantum error correction. The
syndrome information (inset in Figure 3) indicate that
the dominant phase error is on the methylene carbon,
Cm. The non-montonicity of the unencoded and de-
coded data indicate that the error is, at least partially,
coherent. However, full simulation of the dynamics of
the carbon subsystem suggest a longer timescale for the
homonuclear coherent effects. Moreover, the timescale
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FIG. 3. Experimentally determined entanglement fidelities
for unencoded (blue squares), before (green diamonds), and
after (red circles) the correction step of one round of QEC.
After encoding, a variable delay is implemented before the
recovery process. During the delay, the system evolves un-
der the heteronuclear and homonuclear terms in the natural
Hamiltonian. The non-montonicity in the unencoded and de-
coded data are indicative of the presence of a coherent error.
The inset shows the intensities measured for the different syn-
dromes; the dominant error is a phase rotation on the bottom
qubit (Cm).

of the revival of the signal is consistent with the cou-
pling strength between Cm and the methylene protons,
which leads us to conclude that this coupling is respon-
sible for the non-motonicity in the entanglement-fidelity
decay. This conclusion is further supported by the fol-
lowing results, where this coupling is partially averaged
using a heteronuclear-dipolar decoupling pulse sequence.

Next, the 3-bit phase code is employed to protect a sin-
gle qubit against errors from evolution under the natural
Hamiltonian of the carbon subsystem as well as residual
heteronuclear couplings between the carbons and pro-
tons due to partial decoupling of the protons using the
SPINAL64 sequence [12] at amplitude of 70kHz. From
the syndrome information shown in Figure 4, the major
contributions are from phase rotations on C1 and Cm.
This is to be expected, since, in this orientation, and in
this rotating frame, the Zeeman shifts of these two spins
are the dominant terms in the internal Hamiltonian.

Two rounds – We devise a way to experimentally
determine the entanglement fidelity of multiple rounds of
error correction and use it to experimentally determine
the entanglement fidelity of two rounds of the 3-bit phase
code. After the first round of error correction, the sur-
viving polarization from the various input states is dis-
tributed over the various subspaces of the Hilbert space
corresponding to the various syndromes. For the second
round, for each syndrome, we project into the subspace of
the syndrome and perform error correction in that sub-
space, and then sum over all possible syndromes. For
each syndrome, this projection is implemented as a trans-
formation (denoted by Us in Figure 1-c) that swaps the
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Introduction.—One of the crucial requirements [1] for
universal quantum information processing (QIP) is the
ability to protect the fragile quantum information during
computation—either by encoding the information in sub-
spaces of the system’s Hilbert space where it is protected
from degradation by noise or by an active scheme that
detects and rectifies errors continuously or periodically.
This latter, active technique has been experimentally real-
ized in liquid state NMR [2–4] and ion-trap [5] implemen-
tations of a quantum information processor. In each of
these cases, a quantum error-correction code (QECC)
was used to protect against the particular errors present
in the respective systems, and it was shown that, even with
imperfect encoding and recovery operations, employing
quantum error correction is advantageous. Obviously, there
is a limit to how many control errors can be tolerated
before they overwhelm the error-correction protocol.
Thus, the ability to demonstrate error correction is a highly
relevant benchmark of high-fidelity coherent control.

A natural question to ask is whether one has high-
enough-fidelity control to perform multiple rounds of error
correction, as would be required in a realistic computation.
Of course, to usefully performmultiple rounds, one needs a
fresh supply of sufficiently pure ancillæ to ensure that
entropy flows in the proper direction. However, assuming
we have a fresh supply of ancillæ, is it possible, with the
current level of control, to perform meaningful multiple
rounds of quantum error correction?

In this Letter, we report on the implementation of a
3-qubit QECC that corrects phase errors induced by the
environment in a single-crystal solid state NMR system.
We also devise a way to experimentally determine the
entanglement fidelity of multiple back-to-back rounds of
error correction and use it to determine the entanglement
fidelity of two rounds of the 3-bit phase code. In light of

recent work on the characterization and control of such
systems [6–8], as well as state initialization [9,10], this
current Letter signifies an advancement of one of the
leading test beds for QIP ideas. The rest of this Letter is
organized as follows. First, we describe the solid state
NMR system and the sources of noise affecting the qubits.
We then describe the QECC implemented and show the
results from one and two rounds.
System and error models.—Building on the success of

liquid state NMR as a test bed of QIP ideas, solid state
NMR systems offer [7,11] intrinsically larger couplings,
longer coherence times, the ability to pump entropy out of
the system of interest into a spin bath, and the potential for
much higher initial polarizations. This comes at the cost of
a more complicated internal Hamiltonian, which makes the
system harder to control in practice.
The computational register under investigation is an

ensemble of molecular nuclear spins in a macroscopic
single crystal of malonic acid (C3H4O4). A small fraction
(" 3%) of the molecules is triply labeled with (spin- 12 )

13C
to form an ensemble of processor molecules, spatially
buffered from one another by molecules of the same com-
pound but with natural abundance (" 1%) carbon nuclei.
During computation, the processors are decoupled from the
100% abundant spin- 12 protons in the crystal by applying a
decoupling pulse sequence [12] to the protons. For this
3-qubit register, (dephasing) noise comes in the following
forms: (i) Coherent phase errors due to pulse implementa-
tion errors, phase transients, or unwanted evolution under
the natural Hamiltonian (e.g., under the Zeeman term).
These are unitary errors (that cause no loss of coherence)
and can therefore be inverted if tracked properly, but, in case
tracking that evolution is not possible, quantum error
correction becomes a valuable tool. (ii) Incoherent
phase errors due to Zeeman-shift dispersion or other
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After the first round of error correction, the surviving
polarization from the various input states is distributed
over the various subspaces of the Hilbert space correspond-
ing to the various syndromes. For the second round, for
each syndrome, we project into the subspace of the syn-
drome, perform error correction in that subspace, and then
sum over all possible syndromes. For each syndrome, this
projection is implemented as a transformation [denoted by
Us in Fig. 1(c)] that swaps the information in that subspace
with the subspace where the ancillæ are in
ðI þ ZÞðI þ ZÞ—or j00ih00j—and then projecting unto
the latter subspace using the same protocol for initial state
preparation. The quantum circuit describing the protocol is
shown in Fig. 1(c), and the experimental results are shown
in Fig. 4.

The results show that, for long interaction intervals,
there is an advantage to performing two rounds of error
correction with our current level of control. The initial drop
(at zero interaction interval) in the experimentally deter-
mined two-round entanglement fidelity is mainly due to the
projection operation, which is not needed if pure ancillæ
are available.

The scheme requires a number of experiments that
grows as sm$1, where s is the number of possible non-
degenerate syndromes of the code and m is the number of
rounds of correction performed. In this sense, the applica-
bility of the scheme is very limited, but it is sufficient for
our purposes.

Conclusion.—We were able to demonstrate the advan-
tage of performing quantum error correction to protect
against relevant, naturally occurring phase errors—coher-
ent, incoherent, and decoherent—that arise in a solid state
system. We have shown that this is possible by achieving
state-of-the-art control on a 3-qubit system. Moreover, we
have shown that with these control fidelities, multiple
rounds of QEC are possible. This is particularly significant

in a system where it has been previously shown that
entropy can be efficiently removed from the system of
interest to the environment [9,10].
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FIG. 4 (color online). Summary of experimental results for the partial decoupling map: the system evolves under the natural
Hamiltonian as well as 70 kHz decoupling fields that partially modulate the heteronuclear interactions (between the carbons and
protons). Shown (on left) are the single-qubit entanglement fidelities in the cases where no encoding is employed (blue dots); or one
round of the 3-bit code (red crosses); or two rounds of the 3-bit code (black asterisks), where the interaction interval is split to two
equal intervals. The dashed lines are quadratic fits to the data and are included to guide the eye. Also shown (on right) is the signal after
one round of error correction as distributed over the various error-syndrome subspaces. In this case, the dominant errors are phase flips
on the top and bottom qubits, which are encoded on C1 and Cm, respectively.
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The computational potential of a quantum processor can only be unleashed if errors
during a quantum computation can be controlled and corrected for. Quantum error
correction works if imperfections of quantum gate operations and measurements are
below a certain threshold and corrections can be applied repeatedly. We implement multiple
quantum error correction cycles for phase-flip errors on qubits encoded with trapped ions.
Errors are corrected by a quantum-feedback algorithm using high-fidelity gate operations
and a reset technique for the auxiliary qubits. Up to three consecutive correction cycles are
realized, and the behavior of the algorithm for different noise environments is analyzed.

Information in a quantum computer is ex-
tremely vulnerable to noise induced by the
environment and thus needs to be protected

with quantum error correction (QEC) techniques.
Pioneering theoretical work in this field has
shown that all errors can be corrected for if im-
perfections of the quantum operations and mea-
surements are below a certain (error) threshold
and the correction can be applied repeatedly (1–3).
Such error thresholds depend on details of the
physical system, and quantifying them requires a
careful analysis of the system-specific errors, the
en- and decoding procedures, and their respective
implementation (4). It is currently accepted that
gate error probabilities ranging from10–4 to 10–5 are
tolerable (5), which seem to be in reach with tech-
nical improvements in conjunction with dynamical
control techniques (6). In addition, fault-tolerant
operation requires highly efficient, repeatable al-
gorithms to minimize the computational over-
head. So far, all experimental implementations
(7–12) are limited to a single correction cycle,
where the only experimental implementation in
a scalable system (10) relies on projective mea-

surements and classical feedback. Because high-
fidelity measurements take time and potentially
disturb the qubit system, it can be advantageous
to use a measurement-free QEC algorithm based
on implicit quantum feedback (4, 7 ). Also, in
contrast to previous expectations (13), these
measurement-free protocols lead to error thresh-
olds comparable to those of their measurement-
based counterparts (14).

We demonstrate repeated QEC with a system
of trapped 40Ca+ ions as qubits, and multiple rep-
etitions of the algorithm are enabled by a toolbox
consisting of high-fidelity quantum operations
(15, 16), an optimized pulse sequence (17), and a
qubit-reset technique that has a negligible effect
on the system of qubits. The performance of the
implementation is assessed with quantum process
tomography in the presence of phase-flip errors,
and its behavior is analyzed for different environ-
ments that show correlated and uncorrelated phase
noise. Our approach is based on the three-qubit
repetition code capable of detecting and correct-
ing phase-flip errors on a single qubit (1, 4). This
algorithm protects against phase noise, which is
the dominant error source in our ion-trap quan-
tum computer, causing gate errors as well as
decoherence.

As indicated in Fig. 1A, each QEC cycle
consists of (i) encoding the system qubit {|0〉, |1〉}
and two auxiliary qubits (ancillas) into an en-
tangled state, (ii) error incidence, (iii) detecting
and correcting the error, and (iv) resetting the

ancillas. Initially, the qubit to be protected is in
the state |Y〉 = a|+〉 + b|−〉, where jT〉 ¼ 1=

ffiffiffi
2

p

ðj0〉 T j1〉Þ, and the two ancilla qubits are both
prepared in the state |1〉. In the encoding stage,
they are mapped into the entangled statea| + + +〉
+ b| − − −〉. Next, a single-qubit phase-flip error
may change |T〉 to |∓〉. In the decoding and
correction stage, the error is identified by a sim-
ple majority vote, and the system qubit is cor-
rected accordingly. It should be noted that this
protocol maps the information in and out of the
protected state between QEC cycles. Each cycle
is concluded by resetting the ancilla qubits while
preserving the information on the system qubit.

The textbook implementation of a single cycle
of this QEC procedure would consist of a circuit
using four controlled-NOT (CNOT) and one con-
trolled controlled-NOT (Toffoli) gate operations
(4) (Fig. 1B). Although the process fidelities of
available CNOT (92%) (18) and Toffoli (80%)
(19) implementations could possibly be improved,
it seems more promising to pursue an approach
based on global Mølmer-Sørensen entangling gate
operations (fidelity of 99%) (15, 20). These opera-
tions provide a universal set of gates in combina-
tion with individually addressed Stark-shift gates
and collective single-qubit rotations (17, 21).More-
over, the optimization procedure of (17) allows
us to rigorously simplify the pulse sequence for a
complete algorithm based on this set of gates.
Two additional refinements lead to the algorithm
used for the optimization (Fig. 1B). First, the space
of optimized solutions is increased by adding an
arbitrary unitary operation,U, acting only on the
ancillas before resetting them. Second, the en-
coding stage can be simplified by adding an op-
eration, D, and its inverse, D−1, that commutes
with any phase error. As a result, the encoding
stage consists of a single entangling operation,
and the decoding stage can be implemented with
a total of eight pulses with only three entangling
operations (Fig. 1C). Formally, this encoding im-
plements a stabilizer code with the generators
G ¼ fsð1Þy sð2Þz sð3Þy ,sð1Þy sð2Þy sð3Þz g, which are ten-
sor products of the Pauli operatorssðiÞx,y,z acting on
qubit i (4).

The QEC protocol is realized in an experimen-
tal system consisting of a string of three40Ca+ ions
confined in a macroscopic linear Paul trap. Each
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The computational potential of a quantum processor can only be unleashed if errors
during a quantum computation can be controlled and corrected for. Quantum error
correction works if imperfections of quantum gate operations and measurements are
below a certain threshold and corrections can be applied repeatedly. We implement multiple
quantum error correction cycles for phase-flip errors on qubits encoded with trapped ions.
Errors are corrected by a quantum-feedback algorithm using high-fidelity gate operations
and a reset technique for the auxiliary qubits. Up to three consecutive correction cycles are
realized, and the behavior of the algorithm for different noise environments is analyzed.

Information in a quantum computer is ex-
tremely vulnerable to noise induced by the
environment and thus needs to be protected

with quantum error correction (QEC) techniques.
Pioneering theoretical work in this field has
shown that all errors can be corrected for if im-
perfections of the quantum operations and mea-
surements are below a certain (error) threshold
and the correction can be applied repeatedly (1–3).
Such error thresholds depend on details of the
physical system, and quantifying them requires a
careful analysis of the system-specific errors, the
en- and decoding procedures, and their respective
implementation (4). It is currently accepted that
gate error probabilities ranging from10–4 to 10–5 are
tolerable (5), which seem to be in reach with tech-
nical improvements in conjunction with dynamical
control techniques (6). In addition, fault-tolerant
operation requires highly efficient, repeatable al-
gorithms to minimize the computational over-
head. So far, all experimental implementations
(7–12) are limited to a single correction cycle,
where the only experimental implementation in
a scalable system (10) relies on projective mea-

surements and classical feedback. Because high-
fidelity measurements take time and potentially
disturb the qubit system, it can be advantageous
to use a measurement-free QEC algorithm based
on implicit quantum feedback (4, 7 ). Also, in
contrast to previous expectations (13), these
measurement-free protocols lead to error thresh-
olds comparable to those of their measurement-
based counterparts (14).

We demonstrate repeated QEC with a system
of trapped 40Ca+ ions as qubits, and multiple rep-
etitions of the algorithm are enabled by a toolbox
consisting of high-fidelity quantum operations
(15, 16), an optimized pulse sequence (17), and a
qubit-reset technique that has a negligible effect
on the system of qubits. The performance of the
implementation is assessed with quantum process
tomography in the presence of phase-flip errors,
and its behavior is analyzed for different environ-
ments that show correlated and uncorrelated phase
noise. Our approach is based on the three-qubit
repetition code capable of detecting and correct-
ing phase-flip errors on a single qubit (1, 4). This
algorithm protects against phase noise, which is
the dominant error source in our ion-trap quan-
tum computer, causing gate errors as well as
decoherence.

As indicated in Fig. 1A, each QEC cycle
consists of (i) encoding the system qubit {|0〉, |1〉}
and two auxiliary qubits (ancillas) into an en-
tangled state, (ii) error incidence, (iii) detecting
and correcting the error, and (iv) resetting the

ancillas. Initially, the qubit to be protected is in
the state |Y〉 = a|+〉 + b|−〉, where jT〉 ¼ 1=

ffiffiffi
2

p

ðj0〉 T j1〉Þ, and the two ancilla qubits are both
prepared in the state |1〉. In the encoding stage,
they are mapped into the entangled statea| + + +〉
+ b| − − −〉. Next, a single-qubit phase-flip error
may change |T〉 to |∓〉. In the decoding and
correction stage, the error is identified by a sim-
ple majority vote, and the system qubit is cor-
rected accordingly. It should be noted that this
protocol maps the information in and out of the
protected state between QEC cycles. Each cycle
is concluded by resetting the ancilla qubits while
preserving the information on the system qubit.

The textbook implementation of a single cycle
of this QEC procedure would consist of a circuit
using four controlled-NOT (CNOT) and one con-
trolled controlled-NOT (Toffoli) gate operations
(4) (Fig. 1B). Although the process fidelities of
available CNOT (92%) (18) and Toffoli (80%)
(19) implementations could possibly be improved,
it seems more promising to pursue an approach
based on global Mølmer-Sørensen entangling gate
operations (fidelity of 99%) (15, 20). These opera-
tions provide a universal set of gates in combina-
tion with individually addressed Stark-shift gates
and collective single-qubit rotations (17, 21).More-
over, the optimization procedure of (17) allows
us to rigorously simplify the pulse sequence for a
complete algorithm based on this set of gates.
Two additional refinements lead to the algorithm
used for the optimization (Fig. 1B). First, the space
of optimized solutions is increased by adding an
arbitrary unitary operation,U, acting only on the
ancillas before resetting them. Second, the en-
coding stage can be simplified by adding an op-
eration, D, and its inverse, D−1, that commutes
with any phase error. As a result, the encoding
stage consists of a single entangling operation,
and the decoding stage can be implemented with
a total of eight pulses with only three entangling
operations (Fig. 1C). Formally, this encoding im-
plements a stabilizer code with the generators
G ¼ fsð1Þy sð2Þz sð3Þy ,sð1Þy sð2Þy sð3Þz g, which are ten-
sor products of the Pauli operatorssðiÞx,y,z acting on
qubit i (4).

The QEC protocol is realized in an experimen-
tal system consisting of a string of three40Ca+ ions
confined in a macroscopic linear Paul trap. Each
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ion represents a qubit in the |1〉 = 4S1/2(mJ = −1/2)
and |0〉 = 3D5/2(mJ = −1/2) states. The state of
the qubits is then manipulated by a series of
laser pulses resonant with the qubit transition.
Our universal set of gates consists of (i) collec-
tive local operations, X(Q) = exp(−iSxQ/2) and
Y(Q) = exp(−iSyQ/2); (ii) single-qubit operations,
ZkðQÞ ¼ exp½−isðkÞz Q=2%; and (iii) collective en-
tanglingMølmer-Sørensen (15, 16, 20) operations,
Y 2ðQÞ ¼ expð−iS2yQ=4Þ, with Sx,y ¼ ∑3

k¼1s
ðkÞ
x,y .

The collective operations are realized with a wide
beam exciting all ions simultaneously, and the
single-qubit operations are performed with a tight-
ly focused beam affecting only individual ions. An
experimental cycle consists of cooling the ion
string to the motional ground state, applying the
manipulating laser pulses, and measuring the pop-
ulation of the qubit states. This procedure is re-
peated up to 1000 times to obtain the final quantum
state of the qubits.

An important tool, critical to the repeated ap-
plication of the QEC protocol, is the proper reset
of the ancilla qubits, which is carried out with
the optical-pumping technique (Fig. 1D). For the
reset procedure, the population of the ancilla
qubits in state |0〉 is first transferred into the state
|S′〉 = 4S1/2(mJ = +1/2) by using the addressed
beam. This population in |S′〉 is then excited to the
4P1/2(mJ = −1/2) level by a circularly polarized
laser beam at a wavelength of 397 nm. Lastly, the
population from the 4P1/2 level spontaneously
decays to the 4S1/2 level (population loss into
3D3/2 level is avoided by a repump laser resonant
with the 3D3/2 − 4P1/2 transition). The electronic
state of the system qubit is not affected by the
wide pumping laser because it couples only to the
ancillas’ population in |S′〉. The effect on the mo-
tional state of the ion string was calculated with a
multilevel numerical simulation from which we
estimate a heating rate of 0.015 phonons per reset
step for our experimental parameters. Because the
protocol uses only entangling operations of the
Mølmer-Sørensen type, which are insensitive to
the ion motion in first order, the reset has a negli-
gible effect on the QEC protocol.

The operational quality of the QEC protocol
can be assessed by exposing it to correctable er-
rors, that is, single-qubit phase-flip errors. Ideally,
the encoded qubit experiences an identity oper-
ation. Experimentally, the implemented process
is characterized with quantum process tomog-
raphy (22, 23), which yields a process matrix c.
The performance of the implementation is given
by the overlap of the identity process, cid, with
the implemented process, also known as the pro-
cess fidelity, Fproc = Tr(c · cid). The achieved pro-
cess fidelities for up to three repetitions (without
inducing any errors), Fnone, are shown in Table 1.
The process fidelity, however, does not distinguish
between constant operational errors (that could be
undone in principle) and decoherence (irreversible
processes). A measure that is only sensitive to
errors resulting from decoherence is the opti-
mized process fidelity,Fopt, as displayed in Table
1. It is defined as the maximum fidelity that could

be obtained if an additional fixed single-qubit
rotation was perfectly implemented on the output
state (24).

The error-correcting capability of the imple-
mentation is assessed by applying in each cycle
either no-error or a single-qubit phase flip Zi(p)
on ion i (1 being the system ion and 2 and 3 being
the first and second ancillas, respectively) followed
by a process tomography for all combinations.
Because these single-qubit errors are corrected by
the algorithm, the ideal process is again the iden-
tity process. The mean process matrix, c, is then
reconstructed from the data obtained by averag-
ing over all measured expectation values, as shown
for zero to three correction cycles in Fig. 2. The
results shown in Table 1 demonstrate that the
optimized process fidelities with single-qubit er-
rors, Fsopt, and without an induced error,Fopt, are
the same for one, two, and three correction cy-

cles. From this data, we infer that the QEC
protocol corrects single-qubit errors perfectly
within our statistical uncertainty. The infidelities
of the implementation are mainly caused by im-
perfections in the entangling gates as discussed
in (24).

In addition to characterizing the implemented
process in the presence of correctable errors, we
investigate the algorithm’s behavior in a dephas-
ing environment, where also uncorrectable errors
occur. For single qubits, a dephasing process can
be described by a phase-flip probability p, which
reduces the off-diagonal elements of the density
matrix by a factor 1− 2p (for complete dephasing
p = 0.5). In a system of multiple qubits, the
probability of simultaneous n-qubit phase flips,
which cannot be corrected by the three-qubit QEC
protocol, depends on the correlations between the
qubits (24). We analyze the behavior of the QEC

Fig. 1. (A) Schematic view of three subsequent error-correction cycles. (B) Quantum circuit for the
implemented phase-flip error-correction code. The operations labeled H are Hadamard gates. (C)
Optimized pulse sequence implementing a single error-correction cycle. (D) Schematic of the reset
procedure. The computational qubit is marked by filled dots. The reset procedure consists of (i) shelving
the population from |0〉 to |s′〉 = 4S1/2(mJ = +1/2) and (ii) optical pumping to |1〉 (straight blue arrow).

Table 1. Process fidelity for a single uncorrected qubit aswell as for one, two, and three error-correction
cycles. Fnone is the process fidelity without inducing any errors. Fsingle is obtained by averaging over all
single-qubit errors. Fopt and Fsopt are the respective process fidelities where constant operations are
neglected. The statistical errors are derived from propagated statistics in the measured expectation values
where the numbers in parentheses indicate one standard deviation. Dash entries indicate not applicable.

Number of
QEC cycles No error Fnone

Optimized no
error Fopt

Single-qubit
errors Fsingle

Optimized
single-qubit errors Fsopt

0 97(2) 97(2) – –
1 87.5(2) 90.1(2) 89.1(2) 90.1(2)
2 77.7(4) 79.8(4) 76.3(2) 80.1(2)
3 68.3(5) 72.9(5) 68.3(3) 70.2(3)
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Experimental Repetitive Quantum
Error Correction
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The computational potential of a quantum processor can only be unleashed if errors
during a quantum computation can be controlled and corrected for. Quantum error
correction works if imperfections of quantum gate operations and measurements are
below a certain threshold and corrections can be applied repeatedly. We implement multiple
quantum error correction cycles for phase-flip errors on qubits encoded with trapped ions.
Errors are corrected by a quantum-feedback algorithm using high-fidelity gate operations
and a reset technique for the auxiliary qubits. Up to three consecutive correction cycles are
realized, and the behavior of the algorithm for different noise environments is analyzed.

Information in a quantum computer is ex-
tremely vulnerable to noise induced by the
environment and thus needs to be protected

with quantum error correction (QEC) techniques.
Pioneering theoretical work in this field has
shown that all errors can be corrected for if im-
perfections of the quantum operations and mea-
surements are below a certain (error) threshold
and the correction can be applied repeatedly (1–3).
Such error thresholds depend on details of the
physical system, and quantifying them requires a
careful analysis of the system-specific errors, the
en- and decoding procedures, and their respective
implementation (4). It is currently accepted that
gate error probabilities ranging from10–4 to 10–5 are
tolerable (5), which seem to be in reach with tech-
nical improvements in conjunction with dynamical
control techniques (6). In addition, fault-tolerant
operation requires highly efficient, repeatable al-
gorithms to minimize the computational over-
head. So far, all experimental implementations
(7–12) are limited to a single correction cycle,
where the only experimental implementation in
a scalable system (10) relies on projective mea-

surements and classical feedback. Because high-
fidelity measurements take time and potentially
disturb the qubit system, it can be advantageous
to use a measurement-free QEC algorithm based
on implicit quantum feedback (4, 7 ). Also, in
contrast to previous expectations (13), these
measurement-free protocols lead to error thresh-
olds comparable to those of their measurement-
based counterparts (14).

We demonstrate repeated QEC with a system
of trapped 40Ca+ ions as qubits, and multiple rep-
etitions of the algorithm are enabled by a toolbox
consisting of high-fidelity quantum operations
(15, 16), an optimized pulse sequence (17), and a
qubit-reset technique that has a negligible effect
on the system of qubits. The performance of the
implementation is assessed with quantum process
tomography in the presence of phase-flip errors,
and its behavior is analyzed for different environ-
ments that show correlated and uncorrelated phase
noise. Our approach is based on the three-qubit
repetition code capable of detecting and correct-
ing phase-flip errors on a single qubit (1, 4). This
algorithm protects against phase noise, which is
the dominant error source in our ion-trap quan-
tum computer, causing gate errors as well as
decoherence.

As indicated in Fig. 1A, each QEC cycle
consists of (i) encoding the system qubit {|0〉, |1〉}
and two auxiliary qubits (ancillas) into an en-
tangled state, (ii) error incidence, (iii) detecting
and correcting the error, and (iv) resetting the

ancillas. Initially, the qubit to be protected is in
the state |Y〉 = a|+〉 + b|−〉, where jT〉 ¼ 1=

ffiffiffi
2

p

ðj0〉 T j1〉Þ, and the two ancilla qubits are both
prepared in the state |1〉. In the encoding stage,
they are mapped into the entangled statea| + + +〉
+ b| − − −〉. Next, a single-qubit phase-flip error
may change |T〉 to |∓〉. In the decoding and
correction stage, the error is identified by a sim-
ple majority vote, and the system qubit is cor-
rected accordingly. It should be noted that this
protocol maps the information in and out of the
protected state between QEC cycles. Each cycle
is concluded by resetting the ancilla qubits while
preserving the information on the system qubit.

The textbook implementation of a single cycle
of this QEC procedure would consist of a circuit
using four controlled-NOT (CNOT) and one con-
trolled controlled-NOT (Toffoli) gate operations
(4) (Fig. 1B). Although the process fidelities of
available CNOT (92%) (18) and Toffoli (80%)
(19) implementations could possibly be improved,
it seems more promising to pursue an approach
based on global Mølmer-Sørensen entangling gate
operations (fidelity of 99%) (15, 20). These opera-
tions provide a universal set of gates in combina-
tion with individually addressed Stark-shift gates
and collective single-qubit rotations (17, 21).More-
over, the optimization procedure of (17) allows
us to rigorously simplify the pulse sequence for a
complete algorithm based on this set of gates.
Two additional refinements lead to the algorithm
used for the optimization (Fig. 1B). First, the space
of optimized solutions is increased by adding an
arbitrary unitary operation,U, acting only on the
ancillas before resetting them. Second, the en-
coding stage can be simplified by adding an op-
eration, D, and its inverse, D−1, that commutes
with any phase error. As a result, the encoding
stage consists of a single entangling operation,
and the decoding stage can be implemented with
a total of eight pulses with only three entangling
operations (Fig. 1C). Formally, this encoding im-
plements a stabilizer code with the generators
G ¼ fsð1Þy sð2Þz sð3Þy ,sð1Þy sð2Þy sð3Þz g, which are ten-
sor products of the Pauli operatorssðiÞx,y,z acting on
qubit i (4).

The QEC protocol is realized in an experimen-
tal system consisting of a string of three40Ca+ ions
confined in a macroscopic linear Paul trap. Each
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The computational potential of a quantum processor can only be unleashed if errors
during a quantum computation can be controlled and corrected for. Quantum error
correction works if imperfections of quantum gate operations and measurements are
below a certain threshold and corrections can be applied repeatedly. We implement multiple
quantum error correction cycles for phase-flip errors on qubits encoded with trapped ions.
Errors are corrected by a quantum-feedback algorithm using high-fidelity gate operations
and a reset technique for the auxiliary qubits. Up to three consecutive correction cycles are
realized, and the behavior of the algorithm for different noise environments is analyzed.

Information in a quantum computer is ex-
tremely vulnerable to noise induced by the
environment and thus needs to be protected

with quantum error correction (QEC) techniques.
Pioneering theoretical work in this field has
shown that all errors can be corrected for if im-
perfections of the quantum operations and mea-
surements are below a certain (error) threshold
and the correction can be applied repeatedly (1–3).
Such error thresholds depend on details of the
physical system, and quantifying them requires a
careful analysis of the system-specific errors, the
en- and decoding procedures, and their respective
implementation (4). It is currently accepted that
gate error probabilities ranging from10–4 to 10–5 are
tolerable (5), which seem to be in reach with tech-
nical improvements in conjunction with dynamical
control techniques (6). In addition, fault-tolerant
operation requires highly efficient, repeatable al-
gorithms to minimize the computational over-
head. So far, all experimental implementations
(7–12) are limited to a single correction cycle,
where the only experimental implementation in
a scalable system (10) relies on projective mea-

surements and classical feedback. Because high-
fidelity measurements take time and potentially
disturb the qubit system, it can be advantageous
to use a measurement-free QEC algorithm based
on implicit quantum feedback (4, 7 ). Also, in
contrast to previous expectations (13), these
measurement-free protocols lead to error thresh-
olds comparable to those of their measurement-
based counterparts (14).

We demonstrate repeated QEC with a system
of trapped 40Ca+ ions as qubits, and multiple rep-
etitions of the algorithm are enabled by a toolbox
consisting of high-fidelity quantum operations
(15, 16), an optimized pulse sequence (17), and a
qubit-reset technique that has a negligible effect
on the system of qubits. The performance of the
implementation is assessed with quantum process
tomography in the presence of phase-flip errors,
and its behavior is analyzed for different environ-
ments that show correlated and uncorrelated phase
noise. Our approach is based on the three-qubit
repetition code capable of detecting and correct-
ing phase-flip errors on a single qubit (1, 4). This
algorithm protects against phase noise, which is
the dominant error source in our ion-trap quan-
tum computer, causing gate errors as well as
decoherence.

As indicated in Fig. 1A, each QEC cycle
consists of (i) encoding the system qubit {|0〉, |1〉}
and two auxiliary qubits (ancillas) into an en-
tangled state, (ii) error incidence, (iii) detecting
and correcting the error, and (iv) resetting the

ancillas. Initially, the qubit to be protected is in
the state |Y〉 = a|+〉 + b|−〉, where jT〉 ¼ 1=

ffiffiffi
2

p

ðj0〉 T j1〉Þ, and the two ancilla qubits are both
prepared in the state |1〉. In the encoding stage,
they are mapped into the entangled statea| + + +〉
+ b| − − −〉. Next, a single-qubit phase-flip error
may change |T〉 to |∓〉. In the decoding and
correction stage, the error is identified by a sim-
ple majority vote, and the system qubit is cor-
rected accordingly. It should be noted that this
protocol maps the information in and out of the
protected state between QEC cycles. Each cycle
is concluded by resetting the ancilla qubits while
preserving the information on the system qubit.

The textbook implementation of a single cycle
of this QEC procedure would consist of a circuit
using four controlled-NOT (CNOT) and one con-
trolled controlled-NOT (Toffoli) gate operations
(4) (Fig. 1B). Although the process fidelities of
available CNOT (92%) (18) and Toffoli (80%)
(19) implementations could possibly be improved,
it seems more promising to pursue an approach
based on global Mølmer-Sørensen entangling gate
operations (fidelity of 99%) (15, 20). These opera-
tions provide a universal set of gates in combina-
tion with individually addressed Stark-shift gates
and collective single-qubit rotations (17, 21).More-
over, the optimization procedure of (17) allows
us to rigorously simplify the pulse sequence for a
complete algorithm based on this set of gates.
Two additional refinements lead to the algorithm
used for the optimization (Fig. 1B). First, the space
of optimized solutions is increased by adding an
arbitrary unitary operation,U, acting only on the
ancillas before resetting them. Second, the en-
coding stage can be simplified by adding an op-
eration, D, and its inverse, D−1, that commutes
with any phase error. As a result, the encoding
stage consists of a single entangling operation,
and the decoding stage can be implemented with
a total of eight pulses with only three entangling
operations (Fig. 1C). Formally, this encoding im-
plements a stabilizer code with the generators
G ¼ fsð1Þy sð2Þz sð3Þy ,sð1Þy sð2Þy sð3Þz g, which are ten-
sor products of the Pauli operatorssðiÞx,y,z acting on
qubit i (4).

The QEC protocol is realized in an experimen-
tal system consisting of a string of three40Ca+ ions
confined in a macroscopic linear Paul trap. Each
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algorithm in the presence of the two most prom-
inent noise types, namely uncorrelated and cor-
related phase noise, where the qubits are affected
by independent or one and the same noise source,
respectively. In our system, the inherent phase noise
is correlated because it originates predominantly
from fluctuations in the magnetic field strength
and the laser frequency, which are both equal on
all qubits (16).A controlled amount of this noise can
be simply applied by inserting a waiting time be-
tween the encoding and the decoding stage. The
second noise type, uncorrelated phase noise, can
be engineered by performing a weak qubit projec-
tion (4), which is realized by a short laser pulse on
the detection transition once the qubit is encoded
(24). We characterized the phase noise by Ramsey-
type experiments (24), which translate phase flips
into bit flips. The presence of the respective noise
type can then be verified by the probability of
simultaneous n-qubit bit flips (Fig. 3A).

For both uncorrelated and correlated phase
noise, our error correction algorithm performs as

depicted in Fig. 3B. Because uncorrectable two-
and three-qubit phase flips occur more frequently
in the presence of correlated noise (Fig. 3A), the
QEC implementation yields lower fidelities. It
should be noted though, that correlated phase noise
can be completely eliminated by encoding the qubits
in decoherence-free subspaces (DFS) (9, 25, 26)
at the expense of a further increased complexity.
For uncorrelated phase noise, no (DFS) exist, and
therefore only quantum error correction can pro-
tect the qubit. In our implementation, a protected
qubit shows less noise than an unencoded qubit
for an error probability p larger than 0.15 (Fig. 3B).
In the investigation with uncorrelated noise, the
weak projection collapses each qubit with a small
probability into the computational basis. Our data
thus indicate that the algorithm can recover the
quantum information from this single-qubit state
collapse.

Our results demonstrate an implementation of
a repeatable error correction algorithm in a sys-
tem of three trapped-ion qubits. The use of global-

entangling and local-qubit operations in an
optimized pulse sequence allows for very short
and efficient QEC cycles. For uncorrelated errors,
a (single-cycle) corrected qubit performs better
than an uncorrected qubit for a range of error
probabilities. The algorithm can be extended to a
five-qubit implementation, where the qubit stays
protected during error correction (17). Although
technically challenging, such an implementation
in conjunction with DFS encoding appears as a
viable route toward quantum error correction for
trapped ions.
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Fig. 3. (A) Probability of simultaneous two-qubit phase flips as a function of the single-qubit phase flip
probabilities for uncorrelated (square) and correlated (circle) noise measured by a Ramsey-type
experiment. (B) Process fidelity of the QEC algorithm in the presence of correlated (circle) and un-
correlated (square) phase noise as a function of the single-qubit phase flip probability. The theory is
shown for an unencoded qubit (solid line), a corrected qubit in presence of correlated (dashed line), and
uncorrelated noise (dash-dot line). Error bars indicate one standard deviation derived from propagated
statistics in the measured expectation values.

Fig. 2. Mean single-qubit process matrices cn (absolute value) for n QEC cycles with single-qubit errors.
Transparent bars show the identity process matrix, and the red bar denotes a phase-flip error. These
process matrices were reconstructed from a data set averaged over all possible single-qubit errors.
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ion represents a qubit in the |1〉 = 4S1/2(mJ = −1/2)
and |0〉 = 3D5/2(mJ = −1/2) states. The state of
the qubits is then manipulated by a series of
laser pulses resonant with the qubit transition.
Our universal set of gates consists of (i) collec-
tive local operations, X(Q) = exp(−iSxQ/2) and
Y(Q) = exp(−iSyQ/2); (ii) single-qubit operations,
ZkðQÞ ¼ exp½−isðkÞz Q=2%; and (iii) collective en-
tanglingMølmer-Sørensen (15, 16, 20) operations,
Y 2ðQÞ ¼ expð−iS2yQ=4Þ, with Sx,y ¼ ∑3

k¼1s
ðkÞ
x,y .

The collective operations are realized with a wide
beam exciting all ions simultaneously, and the
single-qubit operations are performed with a tight-
ly focused beam affecting only individual ions. An
experimental cycle consists of cooling the ion
string to the motional ground state, applying the
manipulating laser pulses, and measuring the pop-
ulation of the qubit states. This procedure is re-
peated up to 1000 times to obtain the final quantum
state of the qubits.

An important tool, critical to the repeated ap-
plication of the QEC protocol, is the proper reset
of the ancilla qubits, which is carried out with
the optical-pumping technique (Fig. 1D). For the
reset procedure, the population of the ancilla
qubits in state |0〉 is first transferred into the state
|S′〉 = 4S1/2(mJ = +1/2) by using the addressed
beam. This population in |S′〉 is then excited to the
4P1/2(mJ = −1/2) level by a circularly polarized
laser beam at a wavelength of 397 nm. Lastly, the
population from the 4P1/2 level spontaneously
decays to the 4S1/2 level (population loss into
3D3/2 level is avoided by a repump laser resonant
with the 3D3/2 − 4P1/2 transition). The electronic
state of the system qubit is not affected by the
wide pumping laser because it couples only to the
ancillas’ population in |S′〉. The effect on the mo-
tional state of the ion string was calculated with a
multilevel numerical simulation from which we
estimate a heating rate of 0.015 phonons per reset
step for our experimental parameters. Because the
protocol uses only entangling operations of the
Mølmer-Sørensen type, which are insensitive to
the ion motion in first order, the reset has a negli-
gible effect on the QEC protocol.

The operational quality of the QEC protocol
can be assessed by exposing it to correctable er-
rors, that is, single-qubit phase-flip errors. Ideally,
the encoded qubit experiences an identity oper-
ation. Experimentally, the implemented process
is characterized with quantum process tomog-
raphy (22, 23), which yields a process matrix c.
The performance of the implementation is given
by the overlap of the identity process, cid, with
the implemented process, also known as the pro-
cess fidelity, Fproc = Tr(c · cid). The achieved pro-
cess fidelities for up to three repetitions (without
inducing any errors), Fnone, are shown in Table 1.
The process fidelity, however, does not distinguish
between constant operational errors (that could be
undone in principle) and decoherence (irreversible
processes). A measure that is only sensitive to
errors resulting from decoherence is the opti-
mized process fidelity,Fopt, as displayed in Table
1. It is defined as the maximum fidelity that could

be obtained if an additional fixed single-qubit
rotation was perfectly implemented on the output
state (24).

The error-correcting capability of the imple-
mentation is assessed by applying in each cycle
either no-error or a single-qubit phase flip Zi(p)
on ion i (1 being the system ion and 2 and 3 being
the first and second ancillas, respectively) followed
by a process tomography for all combinations.
Because these single-qubit errors are corrected by
the algorithm, the ideal process is again the iden-
tity process. The mean process matrix, c, is then
reconstructed from the data obtained by averag-
ing over all measured expectation values, as shown
for zero to three correction cycles in Fig. 2. The
results shown in Table 1 demonstrate that the
optimized process fidelities with single-qubit er-
rors, Fsopt, and without an induced error,Fopt, are
the same for one, two, and three correction cy-

cles. From this data, we infer that the QEC
protocol corrects single-qubit errors perfectly
within our statistical uncertainty. The infidelities
of the implementation are mainly caused by im-
perfections in the entangling gates as discussed
in (24).

In addition to characterizing the implemented
process in the presence of correctable errors, we
investigate the algorithm’s behavior in a dephas-
ing environment, where also uncorrectable errors
occur. For single qubits, a dephasing process can
be described by a phase-flip probability p, which
reduces the off-diagonal elements of the density
matrix by a factor 1− 2p (for complete dephasing
p = 0.5). In a system of multiple qubits, the
probability of simultaneous n-qubit phase flips,
which cannot be corrected by the three-qubit QEC
protocol, depends on the correlations between the
qubits (24). We analyze the behavior of the QEC

Fig. 1. (A) Schematic view of three subsequent error-correction cycles. (B) Quantum circuit for the
implemented phase-flip error-correction code. The operations labeled H are Hadamard gates. (C)
Optimized pulse sequence implementing a single error-correction cycle. (D) Schematic of the reset
procedure. The computational qubit is marked by filled dots. The reset procedure consists of (i) shelving
the population from |0〉 to |s′〉 = 4S1/2(mJ = +1/2) and (ii) optical pumping to |1〉 (straight blue arrow).

Table 1. Process fidelity for a single uncorrected qubit aswell as for one, two, and three error-correction
cycles. Fnone is the process fidelity without inducing any errors. Fsingle is obtained by averaging over all
single-qubit errors. Fopt and Fsopt are the respective process fidelities where constant operations are
neglected. The statistical errors are derived from propagated statistics in the measured expectation values
where the numbers in parentheses indicate one standard deviation. Dash entries indicate not applicable.

Number of
QEC cycles No error Fnone

Optimized no
error Fopt

Single-qubit
errors Fsingle

Optimized
single-qubit errors Fsopt

0 97(2) 97(2) – –
1 87.5(2) 90.1(2) 89.1(2) 90.1(2)
2 77.7(4) 79.8(4) 76.3(2) 80.1(2)
3 68.3(5) 72.9(5) 68.3(3) 70.2(3)
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Experimental Repetitive Quantum
Error Correction
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The computational potential of a quantum processor can only be unleashed if errors
during a quantum computation can be controlled and corrected for. Quantum error
correction works if imperfections of quantum gate operations and measurements are
below a certain threshold and corrections can be applied repeatedly. We implement multiple
quantum error correction cycles for phase-flip errors on qubits encoded with trapped ions.
Errors are corrected by a quantum-feedback algorithm using high-fidelity gate operations
and a reset technique for the auxiliary qubits. Up to three consecutive correction cycles are
realized, and the behavior of the algorithm for different noise environments is analyzed.

Information in a quantum computer is ex-
tremely vulnerable to noise induced by the
environment and thus needs to be protected

with quantum error correction (QEC) techniques.
Pioneering theoretical work in this field has
shown that all errors can be corrected for if im-
perfections of the quantum operations and mea-
surements are below a certain (error) threshold
and the correction can be applied repeatedly (1–3).
Such error thresholds depend on details of the
physical system, and quantifying them requires a
careful analysis of the system-specific errors, the
en- and decoding procedures, and their respective
implementation (4). It is currently accepted that
gate error probabilities ranging from10–4 to 10–5 are
tolerable (5), which seem to be in reach with tech-
nical improvements in conjunction with dynamical
control techniques (6). In addition, fault-tolerant
operation requires highly efficient, repeatable al-
gorithms to minimize the computational over-
head. So far, all experimental implementations
(7–12) are limited to a single correction cycle,
where the only experimental implementation in
a scalable system (10) relies on projective mea-

surements and classical feedback. Because high-
fidelity measurements take time and potentially
disturb the qubit system, it can be advantageous
to use a measurement-free QEC algorithm based
on implicit quantum feedback (4, 7 ). Also, in
contrast to previous expectations (13), these
measurement-free protocols lead to error thresh-
olds comparable to those of their measurement-
based counterparts (14).

We demonstrate repeated QEC with a system
of trapped 40Ca+ ions as qubits, and multiple rep-
etitions of the algorithm are enabled by a toolbox
consisting of high-fidelity quantum operations
(15, 16), an optimized pulse sequence (17), and a
qubit-reset technique that has a negligible effect
on the system of qubits. The performance of the
implementation is assessed with quantum process
tomography in the presence of phase-flip errors,
and its behavior is analyzed for different environ-
ments that show correlated and uncorrelated phase
noise. Our approach is based on the three-qubit
repetition code capable of detecting and correct-
ing phase-flip errors on a single qubit (1, 4). This
algorithm protects against phase noise, which is
the dominant error source in our ion-trap quan-
tum computer, causing gate errors as well as
decoherence.

As indicated in Fig. 1A, each QEC cycle
consists of (i) encoding the system qubit {|0〉, |1〉}
and two auxiliary qubits (ancillas) into an en-
tangled state, (ii) error incidence, (iii) detecting
and correcting the error, and (iv) resetting the

ancillas. Initially, the qubit to be protected is in
the state |Y〉 = a|+〉 + b|−〉, where jT〉 ¼ 1=

ffiffiffi
2

p

ðj0〉 T j1〉Þ, and the two ancilla qubits are both
prepared in the state |1〉. In the encoding stage,
they are mapped into the entangled statea| + + +〉
+ b| − − −〉. Next, a single-qubit phase-flip error
may change |T〉 to |∓〉. In the decoding and
correction stage, the error is identified by a sim-
ple majority vote, and the system qubit is cor-
rected accordingly. It should be noted that this
protocol maps the information in and out of the
protected state between QEC cycles. Each cycle
is concluded by resetting the ancilla qubits while
preserving the information on the system qubit.

The textbook implementation of a single cycle
of this QEC procedure would consist of a circuit
using four controlled-NOT (CNOT) and one con-
trolled controlled-NOT (Toffoli) gate operations
(4) (Fig. 1B). Although the process fidelities of
available CNOT (92%) (18) and Toffoli (80%)
(19) implementations could possibly be improved,
it seems more promising to pursue an approach
based on global Mølmer-Sørensen entangling gate
operations (fidelity of 99%) (15, 20). These opera-
tions provide a universal set of gates in combina-
tion with individually addressed Stark-shift gates
and collective single-qubit rotations (17, 21).More-
over, the optimization procedure of (17) allows
us to rigorously simplify the pulse sequence for a
complete algorithm based on this set of gates.
Two additional refinements lead to the algorithm
used for the optimization (Fig. 1B). First, the space
of optimized solutions is increased by adding an
arbitrary unitary operation,U, acting only on the
ancillas before resetting them. Second, the en-
coding stage can be simplified by adding an op-
eration, D, and its inverse, D−1, that commutes
with any phase error. As a result, the encoding
stage consists of a single entangling operation,
and the decoding stage can be implemented with
a total of eight pulses with only three entangling
operations (Fig. 1C). Formally, this encoding im-
plements a stabilizer code with the generators
G ¼ fsð1Þy sð2Þz sð3Þy ,sð1Þy sð2Þy sð3Þz g, which are ten-
sor products of the Pauli operatorssðiÞx,y,z acting on
qubit i (4).

The QEC protocol is realized in an experimen-
tal system consisting of a string of three40Ca+ ions
confined in a macroscopic linear Paul trap. Each
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The computational potential of a quantum processor can only be unleashed if errors
during a quantum computation can be controlled and corrected for. Quantum error
correction works if imperfections of quantum gate operations and measurements are
below a certain threshold and corrections can be applied repeatedly. We implement multiple
quantum error correction cycles for phase-flip errors on qubits encoded with trapped ions.
Errors are corrected by a quantum-feedback algorithm using high-fidelity gate operations
and a reset technique for the auxiliary qubits. Up to three consecutive correction cycles are
realized, and the behavior of the algorithm for different noise environments is analyzed.

Information in a quantum computer is ex-
tremely vulnerable to noise induced by the
environment and thus needs to be protected

with quantum error correction (QEC) techniques.
Pioneering theoretical work in this field has
shown that all errors can be corrected for if im-
perfections of the quantum operations and mea-
surements are below a certain (error) threshold
and the correction can be applied repeatedly (1–3).
Such error thresholds depend on details of the
physical system, and quantifying them requires a
careful analysis of the system-specific errors, the
en- and decoding procedures, and their respective
implementation (4). It is currently accepted that
gate error probabilities ranging from10–4 to 10–5 are
tolerable (5), which seem to be in reach with tech-
nical improvements in conjunction with dynamical
control techniques (6). In addition, fault-tolerant
operation requires highly efficient, repeatable al-
gorithms to minimize the computational over-
head. So far, all experimental implementations
(7–12) are limited to a single correction cycle,
where the only experimental implementation in
a scalable system (10) relies on projective mea-

surements and classical feedback. Because high-
fidelity measurements take time and potentially
disturb the qubit system, it can be advantageous
to use a measurement-free QEC algorithm based
on implicit quantum feedback (4, 7 ). Also, in
contrast to previous expectations (13), these
measurement-free protocols lead to error thresh-
olds comparable to those of their measurement-
based counterparts (14).

We demonstrate repeated QEC with a system
of trapped 40Ca+ ions as qubits, and multiple rep-
etitions of the algorithm are enabled by a toolbox
consisting of high-fidelity quantum operations
(15, 16), an optimized pulse sequence (17), and a
qubit-reset technique that has a negligible effect
on the system of qubits. The performance of the
implementation is assessed with quantum process
tomography in the presence of phase-flip errors,
and its behavior is analyzed for different environ-
ments that show correlated and uncorrelated phase
noise. Our approach is based on the three-qubit
repetition code capable of detecting and correct-
ing phase-flip errors on a single qubit (1, 4). This
algorithm protects against phase noise, which is
the dominant error source in our ion-trap quan-
tum computer, causing gate errors as well as
decoherence.

As indicated in Fig. 1A, each QEC cycle
consists of (i) encoding the system qubit {|0〉, |1〉}
and two auxiliary qubits (ancillas) into an en-
tangled state, (ii) error incidence, (iii) detecting
and correcting the error, and (iv) resetting the

ancillas. Initially, the qubit to be protected is in
the state |Y〉 = a|+〉 + b|−〉, where jT〉 ¼ 1=

ffiffiffi
2

p

ðj0〉 T j1〉Þ, and the two ancilla qubits are both
prepared in the state |1〉. In the encoding stage,
they are mapped into the entangled statea| + + +〉
+ b| − − −〉. Next, a single-qubit phase-flip error
may change |T〉 to |∓〉. In the decoding and
correction stage, the error is identified by a sim-
ple majority vote, and the system qubit is cor-
rected accordingly. It should be noted that this
protocol maps the information in and out of the
protected state between QEC cycles. Each cycle
is concluded by resetting the ancilla qubits while
preserving the information on the system qubit.

The textbook implementation of a single cycle
of this QEC procedure would consist of a circuit
using four controlled-NOT (CNOT) and one con-
trolled controlled-NOT (Toffoli) gate operations
(4) (Fig. 1B). Although the process fidelities of
available CNOT (92%) (18) and Toffoli (80%)
(19) implementations could possibly be improved,
it seems more promising to pursue an approach
based on global Mølmer-Sørensen entangling gate
operations (fidelity of 99%) (15, 20). These opera-
tions provide a universal set of gates in combina-
tion with individually addressed Stark-shift gates
and collective single-qubit rotations (17, 21).More-
over, the optimization procedure of (17) allows
us to rigorously simplify the pulse sequence for a
complete algorithm based on this set of gates.
Two additional refinements lead to the algorithm
used for the optimization (Fig. 1B). First, the space
of optimized solutions is increased by adding an
arbitrary unitary operation,U, acting only on the
ancillas before resetting them. Second, the en-
coding stage can be simplified by adding an op-
eration, D, and its inverse, D−1, that commutes
with any phase error. As a result, the encoding
stage consists of a single entangling operation,
and the decoding stage can be implemented with
a total of eight pulses with only three entangling
operations (Fig. 1C). Formally, this encoding im-
plements a stabilizer code with the generators
G ¼ fsð1Þy sð2Þz sð3Þy ,sð1Þy sð2Þy sð3Þz g, which are ten-
sor products of the Pauli operatorssðiÞx,y,z acting on
qubit i (4).

The QEC protocol is realized in an experimen-
tal system consisting of a string of three40Ca+ ions
confined in a macroscopic linear Paul trap. Each
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algorithm in the presence of the two most prom-
inent noise types, namely uncorrelated and cor-
related phase noise, where the qubits are affected
by independent or one and the same noise source,
respectively. In our system, the inherent phase noise
is correlated because it originates predominantly
from fluctuations in the magnetic field strength
and the laser frequency, which are both equal on
all qubits (16).A controlled amount of this noise can
be simply applied by inserting a waiting time be-
tween the encoding and the decoding stage. The
second noise type, uncorrelated phase noise, can
be engineered by performing a weak qubit projec-
tion (4), which is realized by a short laser pulse on
the detection transition once the qubit is encoded
(24). We characterized the phase noise by Ramsey-
type experiments (24), which translate phase flips
into bit flips. The presence of the respective noise
type can then be verified by the probability of
simultaneous n-qubit bit flips (Fig. 3A).

For both uncorrelated and correlated phase
noise, our error correction algorithm performs as

depicted in Fig. 3B. Because uncorrectable two-
and three-qubit phase flips occur more frequently
in the presence of correlated noise (Fig. 3A), the
QEC implementation yields lower fidelities. It
should be noted though, that correlated phase noise
can be completely eliminated by encoding the qubits
in decoherence-free subspaces (DFS) (9, 25, 26)
at the expense of a further increased complexity.
For uncorrelated phase noise, no (DFS) exist, and
therefore only quantum error correction can pro-
tect the qubit. In our implementation, a protected
qubit shows less noise than an unencoded qubit
for an error probability p larger than 0.15 (Fig. 3B).
In the investigation with uncorrelated noise, the
weak projection collapses each qubit with a small
probability into the computational basis. Our data
thus indicate that the algorithm can recover the
quantum information from this single-qubit state
collapse.

Our results demonstrate an implementation of
a repeatable error correction algorithm in a sys-
tem of three trapped-ion qubits. The use of global-

entangling and local-qubit operations in an
optimized pulse sequence allows for very short
and efficient QEC cycles. For uncorrelated errors,
a (single-cycle) corrected qubit performs better
than an uncorrected qubit for a range of error
probabilities. The algorithm can be extended to a
five-qubit implementation, where the qubit stays
protected during error correction (17). Although
technically challenging, such an implementation
in conjunction with DFS encoding appears as a
viable route toward quantum error correction for
trapped ions.
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Fig. 3. (A) Probability of simultaneous two-qubit phase flips as a function of the single-qubit phase flip
probabilities for uncorrelated (square) and correlated (circle) noise measured by a Ramsey-type
experiment. (B) Process fidelity of the QEC algorithm in the presence of correlated (circle) and un-
correlated (square) phase noise as a function of the single-qubit phase flip probability. The theory is
shown for an unencoded qubit (solid line), a corrected qubit in presence of correlated (dashed line), and
uncorrelated noise (dash-dot line). Error bars indicate one standard deviation derived from propagated
statistics in the measured expectation values.

Fig. 2. Mean single-qubit process matrices cn (absolute value) for n QEC cycles with single-qubit errors.
Transparent bars show the identity process matrix, and the red bar denotes a phase-flip error. These
process matrices were reconstructed from a data set averaged over all possible single-qubit errors.

www.sciencemag.org SCIENCE VOL 332 27 MAY 2011 1061

REPORTS

 o
n

 O
c
to

b
e

r 
1

9
, 

2
0

1
1

w
w

w
.s

c
ie

n
c
e

m
a

g
.o

rg
D

o
w

n
lo

a
d

e
d

 f
ro

m
 



Erasure-correcting code in optics
C-Y Lu et al. Proc. Natl. Acad. Sci. USA 105, 11050-11054 (2008)

Encoding:
|0〉L = (|00〉12 + |11〉12)(|00〉34 + |11〉34)
|1〉L = (|00〉12 − |11〉12)(|00〉34 − |11〉34)
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FIG. 1: A quantum circuit with two Hadamard (Hd) gates
and three CNOT gates for implementation of the four-qubit
QEEC code. The stabilizer generators of the QEEC code are
X ⊗ X ⊗ X ⊗X and Z ⊗ Z ⊗ Z ⊗ Z, where X (Z) is short
for Pauli matrix σx (σz) [24]. As proposed by Vaidman et al.,
this four-qubit code can also be used for error detection [33].

We can consider the effect of a qubit loss as an un-
intended measurement from which we learn no informa-
tion. The main feature of the code (1) is that the de-
tected loss of any one of the physical qubits will not de-
stroy the information of the logical qubit, but merely
yields a recoverable Pauli error. Suppose for example,
qubit 1 is lost. We first measure the qubit 2 in com-
putational (|0/1〉) basis. With its measurement result
(q2 = 0 or 1), we can obtain a pure quantum state |ψ′〉l =
a0(|0〉3|0〉4+|1〉3|1〉4)+(−1)q2a1(|0〉3|0〉4−|1〉3|1〉4). With
similar reasoning, more-qubit loss can also be corrected
by increasing the size of loss-tolerant codes in the form of
|Ψ〉l = a0(|0〉⊗n + |1〉⊗n)⊗m +b0(|0〉⊗n− |1〉⊗n)⊗m, which
can be created e.g., by the incremental encoding scheme
proposed in Ref. [29].

Demonstration of the QEEC code

A quantum circuit to implement the encoding of the
four-qubit QEEC code is shown in Fig. 1. To implement
this, we design a linear optics network (see Fig. 2A). The
physical qubits are encoded by the polarizations of pho-
tons, with 0 corresponding to the horizontal (H) polariza-
tion and 1 to the vertical (V). As shown in ref. [31, 32],
such an encoding method naturally incorporates a loss
detection mechanism and may enable high-fidelity linear
optical QC. Our experimental setup is illustrated in Fig.
2B. We use spontaneous parametric down conversion [34]
to create the primary photonic qubits, which are then co-
herently manipulated by linear optical elements to imple-
ment the coding circuit and read out using single-photon
detectors (see the caption of Fig. 2B and Methods).

To demonstrate the quantum codes work for general
unknown states, we test three different input states: |V 〉,
|+〉, and |R〉 = (|H〉+ i|V 〉)/

√
2, which are encoded into

the four-qubit QEEC codes respectively as (normaliza-
tions omitted)

|V 〉l = (|H〉2|H〉3 − |V 〉2|V 〉3)(|H〉4|H〉5 − |V 〉4|V 〉5),
|+〉l = (|H〉2|H〉3|H〉4|H〉5 + |V 〉2|V 〉3|V 〉4|V 〉5),
|R〉l = (|H〉2|H〉3 + |V 〉2|V 〉3)(|H〉4|H〉5 + |V 〉4|V 〉5)

+i(|H〉2|H〉3 − |V 〉2|V 〉3)(|H〉4|H〉5 − |V 〉4|V 〉5),

where the subscript denotes the spatial mode. Inter-
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FIG. 2: The linear optical networks and experimental setup.
A. We simulate the CNOT gate in Fig. 1 using a polarizing
beam splitter (PBS) and a half-wave plate (HWP), through
which a control photon (α|H〉 + β|V 〉) and a target photon
|H〉 evolve into (α|H〉|H〉+β|V 〉|V 〉) after postselection. Thus
the circuit in Fig. 1 can be realized by this linear optical
network. B. A pulsed infrared laser (788nm, 120fs, 76MHz)
passes through a LiB3O5 (LBO) crystal where the laser is
partially up-converted to ultraviolet (λ=394nm). Behind the
LBO, five dichroic mirrors (only one shown) are used to sep-
arate the mixed ultraviolet (UV) and infrared light compo-
nents. The reflected UV laser passes through two β-barium
borate (BBO) crystals to produce two pairs of entangled pho-
tons. The transmitted infrared laser is further attenuated
to a weak coherent photon source. To achieve good spatial
and temporal overlap, the photons are spectrally filtered by
narrow-band filters (∆λFWHW = 3.2nm, with peak transmis-
sion rates of ∼ 98%) and detected by fiber-coupled single-
photon detectors (D1, · · · , D5) [37]. The compensator con-
sists of a HWP sandwiched by two thin BBO crystals. By
tilting the BBO, we can compensate the undesired phase shift
in the PBS. C. The five-photon cluster state can be prepared
by small modifications of the scheme of Fig. 2A.

estingly they show three distinct types of entanglement:
|V 〉l is a product state of two Einstein-Podolsky-Rosen
(EPR) pairs [38], |+〉l is a four-qubit Greenberger-Horne-
Zeilinger (GHZ) state [39], while |R〉l is locally equivalent
to a cluster state [40].

We test the performance of the encoding process by de-
termining fidelities of the encoded four-qubit states. The
fidelities are judged by the overlap of the experimentally
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FIG. 1: A quantum circuit with two Hadamard (Hd) gates
and three CNOT gates for implementation of the four-qubit
QEEC code. The stabilizer generators of the QEEC code are
X ⊗ X ⊗ X ⊗X and Z ⊗ Z ⊗ Z ⊗ Z, where X (Z) is short
for Pauli matrix σx (σz) [24]. As proposed by Vaidman et al.,
this four-qubit code can also be used for error detection [33].

We can consider the effect of a qubit loss as an un-
intended measurement from which we learn no informa-
tion. The main feature of the code (1) is that the de-
tected loss of any one of the physical qubits will not de-
stroy the information of the logical qubit, but merely
yields a recoverable Pauli error. Suppose for example,
qubit 1 is lost. We first measure the qubit 2 in com-
putational (|0/1〉) basis. With its measurement result
(q2 = 0 or 1), we can obtain a pure quantum state |ψ′〉l =
a0(|0〉3|0〉4+|1〉3|1〉4)+(−1)q2a1(|0〉3|0〉4−|1〉3|1〉4). With
similar reasoning, more-qubit loss can also be corrected
by increasing the size of loss-tolerant codes in the form of
|Ψ〉l = a0(|0〉⊗n + |1〉⊗n)⊗m +b0(|0〉⊗n− |1〉⊗n)⊗m, which
can be created e.g., by the incremental encoding scheme
proposed in Ref. [29].

Demonstration of the QEEC code

A quantum circuit to implement the encoding of the
four-qubit QEEC code is shown in Fig. 1. To implement
this, we design a linear optics network (see Fig. 2A). The
physical qubits are encoded by the polarizations of pho-
tons, with 0 corresponding to the horizontal (H) polariza-
tion and 1 to the vertical (V). As shown in ref. [31, 32],
such an encoding method naturally incorporates a loss
detection mechanism and may enable high-fidelity linear
optical QC. Our experimental setup is illustrated in Fig.
2B. We use spontaneous parametric down conversion [34]
to create the primary photonic qubits, which are then co-
herently manipulated by linear optical elements to imple-
ment the coding circuit and read out using single-photon
detectors (see the caption of Fig. 2B and Methods).

To demonstrate the quantum codes work for general
unknown states, we test three different input states: |V 〉,
|+〉, and |R〉 = (|H〉+ i|V 〉)/
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2, which are encoded into

the four-qubit QEEC codes respectively as (normaliza-
tions omitted)

|V 〉l = (|H〉2|H〉3 − |V 〉2|V 〉3)(|H〉4|H〉5 − |V 〉4|V 〉5),
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FIG. 2: The linear optical networks and experimental setup.
A. We simulate the CNOT gate in Fig. 1 using a polarizing
beam splitter (PBS) and a half-wave plate (HWP), through
which a control photon (α|H〉 + β|V 〉) and a target photon
|H〉 evolve into (α|H〉|H〉+β|V 〉|V 〉) after postselection. Thus
the circuit in Fig. 1 can be realized by this linear optical
network. B. A pulsed infrared laser (788nm, 120fs, 76MHz)
passes through a LiB3O5 (LBO) crystal where the laser is
partially up-converted to ultraviolet (λ=394nm). Behind the
LBO, five dichroic mirrors (only one shown) are used to sep-
arate the mixed ultraviolet (UV) and infrared light compo-
nents. The reflected UV laser passes through two β-barium
borate (BBO) crystals to produce two pairs of entangled pho-
tons. The transmitted infrared laser is further attenuated
to a weak coherent photon source. To achieve good spatial
and temporal overlap, the photons are spectrally filtered by
narrow-band filters (∆λFWHW = 3.2nm, with peak transmis-
sion rates of ∼ 98%) and detected by fiber-coupled single-
photon detectors (D1, · · · , D5) [37]. The compensator con-
sists of a HWP sandwiched by two thin BBO crystals. By
tilting the BBO, we can compensate the undesired phase shift
in the PBS. C. The five-photon cluster state can be prepared
by small modifications of the scheme of Fig. 2A.

estingly they show three distinct types of entanglement:
|V 〉l is a product state of two Einstein-Podolsky-Rosen
(EPR) pairs [38], |+〉l is a four-qubit Greenberger-Horne-
Zeilinger (GHZ) state [39], while |R〉l is locally equivalent
to a cluster state [40].

We test the performance of the encoding process by de-
termining fidelities of the encoded four-qubit states. The
fidelities are judged by the overlap of the experimentally

Test the code with the encoded states
|V 〉L = (|HH〉23 − |V V 〉23)(|HH〉45 − |V V 〉45)

|+〉L = (|HHHH〉2345 + |V V V V 〉2345

|R〉L = (|HH〉23 + |V V 〉23)(|HH〉45 + |V V 〉45)+
(|HH〉23 − |V V 〉23)(|HH〉45 − |V V 〉45)

For input states |V 〉L, |+〉L and |R〉L, the recovery fidelities averaged
over all possible measurement outcomes are found to be 0.832 ± 0.012,
0.764 ± 0.014, and 0.745 ± 0.015 demonstrating error correction.



Erasure-correcting code in optics
M. Lassen et al. Nature Photonics 4, 700, 2010

Error model: random fading,
likely to occur as a result
of time jitter noise or beam
pointing noise in an atmo-
spheric transmission channel
and can be represented by
ρ = (1 − PE)|α〉〈α| +
PE|0〉〈0|

that a subpart of the deterministic circuit has been implemented in
the context of CV quantum secret sharing24.

Schematics of the set-up are depicted in Fig. 1, showing an encod-
ing station where the four-mode code is prepared, an erasure channel
where information is randomly erased, and a decoding station, where
measurement outcomes either correct or filter the corrupted state.
The key element in the preparation stage is a two-mode Gaussian
entangled source, which exhibits quantum correlations between
pairs of conjugate quadrature amplitudes (see Methods). This state
interferes with two signal states to form the final four-mode code
comprising four optical beams. A vacuum state is chosen as one of
the input signals, and the other input is prepared in a coherent
state. This choice simplifies the experimental realization, but is not
an intrinsic limitation of the scheme. The four resulting beams are
then dispersed into four free-space transmission channels that can
be independently blocked to simulate any combination of erasures.
At the decoding station the interferences are reversed in two balanced
beamsplitters, and two of the resulting outputs are jointly measured
in an entangledmeasurement strategy25 in which themodes interfere
on a balanced beamsplitter and conjugate quadratures are measured
at the two outputs (see Fig. 1). The resulting outcomes are now used
either to deterministically correct the errors through conditional
linear displacements or to probabilistically filter out the loss-
infected states.

First, we describe the deterministic correction strategy. Figure 2a
shows a scan of the quantum-mechanical oscillator comprising the
coherent state quantum information of the input state. The infor-
mation encoded in a coherent state can be concisely described by
the conjugate quadrature operators: the amplitude x̂ and the
phase p̂ such that |al = |kx̂l+ ikp̂ll. For the specific measurement

run shown in Fig. 2a, |al≈ |3þ 3il. Figure 2b illustrates the
measurements at the homodyne detector HD1 after the four-
mode state has been transmitted through the channel with erasure
on channel 2. The state is clearly seen to be corrupted as the first
and second moments of the quantum oscillator are significantly
changed. However, by using the measurement outcomes (xm, pm)
of the homodyne detectors (Fig. 2c) to linearly displace the ampli-
tude and phase quadratures of the transmitted state (xo, po) with the
gain, G (xo " xo +

!!
G

√
xm, po " po +

!!
G

√
pm), the original

quantum state is partially recovered, as shown qualitatively in
Fig. 2d for G¼ 1.97. The accuracy in the estimation of the error
(and thus the precision of the displacement) depends crucially on
the degree of squeezing: by using infinite squeezing, the transmitted
states can, in principle, be perfectly corrected15. With finite squeez-
ing the protocol can be quantified by the fidelity between the input
state and the corrected output state. Based on the measurements
presented above, the fidelities are computed for various gains and
the results are depicted by the blue squares in Fig. 2e. A
maximum fidelity of 0.57+0.02 is obtained, which clearly surpasses
the classical benchmark of 0.50. Similar fidelities are achieved for
the erasure of channel 1, whereas fidelities close to unity are
obtained when channels 3 or 4 are blocked. Measurements for
which the two-mode squeezed state was replaced by vacua were
also carried out for different displacement gains. The resulting fide-
lities are depicted in Fig. 2e by the red circles, and they nicely illus-
trate the need for entanglement. Although the protocol has been
implemented only for a specific pair of input coherent states, it
will work equally well for any coherent state as the protocol is invar-
iant under displacements. Thus any input alphabet of coherent
states can be corrected.
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Figure 1 | Schematics of the experimental QECC set-up. a, The four-mode code is prepared through linear interference at three balanced beamsplitters
(BBS) between the two input states, |al and |0l, and two ancillary squeezed vacuum states. The latter states are produced in two optical parametric
oscillators, OPO 1 and OPO 2, and the coherent state is prepared via a coherent modulation at 5.5 MHz produced by an amplitude (AM) and a phase
modulator (PM). b, The encoded state is injected into four free-space channels that can be independently blocked, thereby mimicking erasures. c, The
corrupted state is decoded, the error is detected by the syndrome measurement (SM) and the state is deterministically corrected or probabilistically selected.
The measurement is an entangled measurement in which the phase and amplitude quadratures of the two emerging states are jointly measured (for example,
see ref. 25). The error correcting displacement or post-selection operation is carried out electronically after the measurement of the transmitted quantum
states. These states are measured with two independent homodyne detectors that allow for full quantum state characterization, by scanning the phases (u)
of the local oscillators (LOs) with respect to the phases of the signals. All erasure events are obtained by blocking the beam paths.
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We now proceed by discussing the results of probabilistic
recovery of quantum information, where the objective is to use a
probabilistic QECC to surpass the fidelity associated with a single
channel. In contrast to the deterministic approach, for which strin-
gent conditions are put on the channels, the probabilistic approach
is much less stringent. One may allow for multiple erasures and, in
addition, there are no requirements regarding knowledge of the
occurrence and location of the erasures. In this case, the density
matrix of the transmitted state is given by

rtrans =
∑16

i=1

Piri (2)

where ri is the output density matrix corresponding to one of the
16 different erasure patterns that may occur during transmission
and Pi indicates the associated probability running from PE

4 to
(12 PE)

4 corresponding to complete erasure and complete trans-
mission, respectively. Using the tomographic maximum likelihood
algorithm for reconstructing the density matrices via homodyne
detection, we fully characterized the input and output states for
various cases. Figure 3a shows the density matrix of the coherent
input state in the 30× 30 Fock state basis. This state was then
mixed with the entangled state and sent through the four channels.

Subsequently, we performed 16 different full measurement runs by
interchangeably blocking the four channels corresponding to the
16 different transmission patterns. The measurement outcomes are
then weighted by the probabilities Pi to create the density matrix of
the transmittedmixed state. The corrupted states were then probabil-
istically corrected by conditioning on the outcomes of the syndrome
measurements (SMs). For the realization in Fig. 3 we used the con-
dition that if the measurement outcomes obeyed |xm|. 0.8 and
|pm|. 0.8 (found from optimization15), an error was detected and
the resulting transmitted state was discarded. After this filtering
operation, we reconstructed the density matrix based on the
reduced data set; the result is shown in Fig. 3c for PE¼ 0.25. By repla-
cing the entangled states with vacua, the resulting density matrix is
largely changed, as illustrated in Fig. 3d. To determine the fidelity
F between the input state (with density matrix rin) and the filtered
output state (with density matrix rout), we used the general
expression F = [Tr(

""""""""""""""""""""
rout

√
rin

""""
rout

√√
)]2. For the example in Fig. 3c

we computed a fidelity of F¼ 0.82+0.02, which clearly surpasses
the transmission fidelity of F≃ 0.75 obtained by transmission in a
single channel with similar erasure probability and with no error cor-
rection applied. It is interesting to note that even without entangle-
ment, the protocol also outperforms the single channel approach15.
For the corresponding entanglement-free set-up, in which the two-
mode squeezed state is replaced by vacua, the corrected density
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Figure 2 | Results of the deterministic QECC protocol. a, Phase scan of the input coherent state with the excitation |al≈ |3þ 3il. b,c, Phase scans of the
output state measured at HD1 before correction (b) and of the corrected output state (c). d, Histograms of the marginal distributions of the amplitude and
phase quadratures of the joint syndrome measurement (in shot noise units, SNU). Red and blue curves correspond to the marginal distributions for a shot-
noise-limited (SNL) state, whereas the black curves are the best Gaussian fits to the histograms. e, Fidelity is plotted as a function of the displacement gain
with (blue squares) and without (red circles) the use of entanglement. The dashed and solid lines are the theoretically predicted fidelities for 0 dB and 2 dB
of two-mode squeezing, respectively. The error bars depend on the measurement error, which is mainly associated with the stability of the system over time
and the finite resolution of the analog-to-digital converter. This amounts to an error of+3% for all fidelities.

LETTERS NATURE PHOTONICS DOI: 10.1038/NPHOTON.2010.168

NATURE PHOTONICS | VOL 4 | OCTOBER 2010 | www.nature.com/naturephotonics702

© 2010 Macmillan Publishers Limited.  All rights reserved. 

The CV code for protecting
quantum information from
erasures is a four-mode
entangled mesoscopic state
in which two (information-
carrying) quantum states are
encoded with the help of a
two-mode entangled vacuum
state



DFS in neutron interferometry
D. Pushin, et al. PRL 107.150401, 2011

Neutron are great probes to
• characterize magnetic, nu-
clear and structural properties
of materials, protein structures
• can be used on biological or
cold material,
• but they lack robustness

From an information processing point of view:

|01〉 →
1

√
2
(|01〉 + |10〉) → α|01〉 + β|10〉

or in “logical” terms:

|0L〉 →
1

√
2
(|0L〉 + |1L〉) → α|0L〉 + β|1L〉

The dominant noise is a phase shift due to rotation around the
vertical axis, i.e. eiθZ



DFS in neutron interferometry
D. Pushin, et al. PRL 107.150401, 2011

In the 4(or 5)-blade case
we have path 1 and path
2 canceling each other
phase gain/loss and this
is similar to 2 qubit sys-
tem subject to the noise
Z1Z2 which has a DFS
{|01L〉, |10L〉}.



Magic state distillation
Kitaev and Bravyi Phys. Rev. A 71 (2005) 022316

If ρ has imperfection such as

ρ
′
=

1

2
1l +

p′
√

3
(X + Y + Z)

we can use the decoding of 5 bit code to purify the state

i.e., if p′ is near enough 1, p′′ > p′
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Magic state distillation
Use crotonic acid
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Conclusion

In order to implement quantum error correction, we need

• Good knowledge of the noise

• Good quantum control

• Ability to extract entropy

• Parallel operations

We have seen, in the last 4 years, an increased integration of
these requirements, much better control, and operations on
a larger number of qubits.

But it is only the beginning of experimental QEC and its fault
tolerant implementations.
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