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Outline

= Stabilizer codes and transversal gates

= Topological codes: Surface codes

= Color codes

» Triangular codes: Transversal Clifford gates.
= Conection with classical statistical mechanics.
= D-colexes

= 3D color codes

= Tetrahedral codes: universality.
= Topological Order



Stabilizer Codes

= A stabilizer code! C of length n is a subspace of the Hilbert space of a set of n
qubits. It is defined by a stabilizer group S of Pauli operators, i.e., tensor products of
Pauli matrices.
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= Some stabilizer codes are specialy suitable for quantum computation. They allow to
perform operations in a transversal and uniform way:
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Gate Sets

= Several codes allow the transversal implementation of the gates
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which generate the Clifford group. This is useful for quantum information tasks such
as teleportation or entanglement distillation.

= Quantum Reed-Muller codes! are very special. They allow universal computation
through transversal gates
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and transversal measurements of X and Z.

= We will see how both sets of operations can be transversally implemented in 2D and 3D
topological color codes:

Color Codes = Transversality + Topology

1 E. Knill et al.



Topological Stabilizer Codes

= For a TSC we mean a code in which:
a) the generators of the stabilizer are local and
b) non-detectable errors have a global (topological) nature.
= Usually we consider TSCs in which
a) qubits are placed on a surface,
b) the stabilizer S is composed of boundaries and its normalizer N of cycles,
c) non-detectable errors are related to cycles which are not boundaries (homology...).
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Topological Stabilizer Codes

= When working with stabilizer codes, it is enough to measure a set of generators of the
stabilizer in order to perform error correction.

» The nice property of TSCs is their locality: one can construct arbitrarily robust codes
while the generators of the stabilizer remain local and with a fixed support.

= It turns out that the best strategy to perform error correction within TSCs is to
continuously measure local generators (Dennis et al. ’02).
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Surface Codes

» To construct a surface code (Kitaev 07,
aka toric code), one starts from a 4-
valent lattice with 2-colorable faces.

= Each vertex corresponds to a qubit.

» The generators of the stabilizer are light
and dark plaquette operators:

BZ = 71757574

Bf = X5X¢X7X3g

= Dark (light) string operators are
products of Z-s (X-s).

» Plaquette operators generate the
stabilizer: boundary string operators.
» Closed strings compose its normalizer.

» Crossing dark and light strings
operators anticommute.

= Encoded X-s and Z-s can be chosen
from those closed strings which are not
boundaries.




Borders

To obtain planar codes, we need to introduce the notion of border.

An open strings has endpoints at plaquettes of its color. The string operator
generates violations of the corresponding plaquette stabilizers.

Then, if a plaquette operator is missing, strings can end at it and still be ‘closed’.

A dark (light) border is a big missing dark (light) plaquette, where dark (light)
strings can end.

Strings that start and end in the same border are boundaries.
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Pancake Quantum Computer

Imagine a quantum computer in the form of a stack of layers (Dennis et al. ’02)
Each layer corresponds to a single-qubit encoded in a surface code.
Measurements of the stabilizers are continuous to keep track of errors.

CNot gates are performed in a purely transversal way, but others require code
deformations and distillation.

Can we find topological codes implementing other gates transversally? Yes!
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Each register
encodes a qubit in
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Transversal CNot

. Transversal Hadamard +
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Color Codes

= Color codes are obtained from trivalent 1 6 x

lattices with 3-colorable faces. ZQ i By = X1 X0 X3X4X5X¢
» Faces are classified in red, green an.d blue. B ? — 71T T2 707
= Each vertex corresponds to a qubit. 3 4

= The generators of the stabilizer are X and Z plaquette operators.
» As plaquettes, strings come in three colors.
= Strings not only can be deformed. A new feature appears: branching points.

Surface codes Color codes



String Operators

For each colored string S, there are a pair of string { Sb 7 S Z }=0
operators, SX and S%, products of Xs or Zs along S. C/)

String operators either commute or anticommute.
Two string operators anticommute when they %
have different color and type and cross an odd

number of times.

As in surface codes, encoded X and Z operators can be chosen from closed string
operators which are not boundaries.

The number of encoded qubits is twice as in a surface code:
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Surface code: 2 qubits Color code: 4 qubits




Borders and String-Nets

= Borders are big missing plaquettes. Their color is that of the erased plaquette.

= Both examples encode 2 qubits, but the second requires string-net operators.

» These have a new feature, which turns out to be crucial in orther to be able to
implement transversally the whole Clifford group:




Triangular Codes

= These are color codes encoding a single qubit.
= All strings in such a code are boundaries (belong to the stabilizer).
» The encoded X and Z are given by the string-net operators 7% and T%.

d=7,n=37

» They require less
qubits than their
surface code
counterparts.

= A transversal H leaves the code invariant. = Under this condition, in triangular codes

For a transversal K, this is true only if the we can implement transversally H and K
vertices per face are v=4x: gates because:
HBfH'=B? KBfK'=(-)!BfBf HXH'=7 KXK'=4iXZ
ABZAY = BY KB?K'=B? HZH' =X KZK'=2Z

= The CNot is also transversal as in surface codes: both families of codes are CSS.
» Thus we can implement the whole Clifford group transversally.



Classical Statistical Models

= Color codes can be connected with certain classical 3-body Ising models. Their
partition function is the overlapping of a color code and certain product state:
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(2,4,k)
= For honeycomb and 4-8 lattices, the model lives in triangular and union-jack lattices.

= Recall that transversal K gates are possible in 4-8 lattices but not in the honeycomb.
= At the same time, the universality classes of the classical models are different!

Honeycomb Square-octogonal

Triangular Union Jack

= Random versions of these classical models appear in the computation of the
threshold of color codes (work in progress).



D-Colexes

= Color codes can be generalized to higher spatial dimensions D.

= First we have to generalize our 2D lattice. Note that edges can
be colored in accordance with faces, so that at each vertex
there are 3 links meeting, one of each color.

Local appearance of the lattice.

= In fact, the whole structure of the lattice is contained in its colored graph: faces
can be reconstructed from edge coloring.




D-Colexes

In dimension D, we consider graphs with D+1 edges meeting at each vertex, of D+1
different colors.

Such graphs, with certain additional properties, give rise to D-manifolds. We call the
resulting colored lattices D-colexes (for color complex).

Of particular interest is the case D=3:

The neigborhood of a
vertex.

The simplest 3-colex in
projective space.




3D Color Codes

= Again one qubit per vertex, but now we have face and (3-) cell operators generating S.

Cell operators Plaquette operators

Bf: BJ?:®Z7;

= Strings are constructed as in 2-D, but now come in four colors.

The new feature are membranes. They come in six color combinations and, as
strings, have branching properties.
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3D Color Codes

Now there are 3 independent colors for strings (and 3 combinations for membranes).
The number of encoded qubits is 3h, = 3h,, where h;is the i-th Betty number.

String and membrane operators anticommute only if they share a color and the
string erosses an odd number of times the membrane.

Encoded X and Z operators can be chosen from closed string and membrane

operators which are not boundaries.
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A pauli basis for the operators on the 3
qubits encoded in S2xS1.




Tetrahedral Codes

= 3-colexes cannot be constructed in our everyday 3D world keeping the locality
structure unless we allow boundaries.

= Asin 2D, borders are big erased cells and they have the color of the erased cell.

= Given a border of color ¢, strings can end at it if they are c-strings and membranes can
end at it if they are xy-strings with x and y different of c.

» The analogue of triangular codes are tetrahedral codes, which encode a single qubit.

Simplest
example
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» The desired transversal K¥/2gate can be implemented as long as faces have 4x
vertices and cells 8x vertices. The trick is analogous to that in Reed-Muller codes:
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Topological Order

A physical system showing topological order can be related to every TSC:

H=— E O S’ = Set of local generators of S
oes’
For 2-colexes, the excitations are abelian anyons, because monodromy operations can
give global phases.

For 3-colexes, charges and fluxes exist. The topological content is related to the fact
that charges can wind arround fluxes.

For D-colexes, the resulting systems are brane-net condensates. The excitations are
abelian branyons. For D>3, different topological orders are possible.
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Conclusions

D-colexes are D-valent complexes with D-colorable edges.
Topological color codes are obtained from D-colexes.
2-colexes allow transversal Clifford gates.

3-colexes allow the same transversal gates as Reed-Muller codes.
2D color codes are related to classical 3-body Ising models.

Brane-net condensate models arrise from color codes.



