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Stabilizer Codes

� A stabilizer code1 C of length n is a subspace of the Hilbert space of a set of n
qubits. It is defined by a stabilizer group S of Pauli operators, i.e.,  tensor products of 
Pauli matrices.

� Some stabilizer codes are specialy suitable for quantum computation. They allow to 
perform operations in a transversal and uniform way:

|ψ〉 ∈ C ⇐⇒ ∀ s ∈ S s|ψ〉 = |ψ〉

1 D. Gottesman 95
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� Several codes allow the transversal implementation of the gates

which generate the Clifford group. This is useful for quantum information tasks such 
as teleportation or entanglement distillation.

� Quantum Reed-Muller codes1 are very special. They allow universal computation
through transversal gates

and transversal measurements of X and Z.

� We will see how both sets of operations can be transversally implemented in 2D and 3D 
topological color codes:

1 E. Knill et al.
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Color Codes = Transversality + Topology



Topological Stabilizer Codes

� For a TSC we mean a code in which:

a) the generators of the stabilizer are local and 

b) non-detectable errors have a global (topological) nature.

� Usually we consider TSCs in which

a) qubits are placed on a surface,

b) the stabilizer      is composed of boundaries and its normalizer of cycles,

c) non-detectable errors are related to cycles which are not boundaries (homology...). 
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Topological Stabilizer Codes

� When working with stabilizer codes, it is enough to measure a set of generators of the 
stabilizer in order to perform error correction.

� The nice property of TSCs is their locality: one can construct arbitrarily robust codes 
while the generators of the stabilizer remain local and with a fixed support.

� It turns out that the best strategy to perform error correction within TSCs is to 
continuously measure local generators (Dennis et al. ’02).
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Surface Codes

� To construct a surface code (Kitaev ’07, 
aka toric code), one starts from a 4-
valent lattice with 2-colorable faces.

� Each vertex corresponds to a qubit.

� The generators of the stabilizer are light 
and dark plaquette operators:

� Dark (light) string operators are 
products of Z-s (X-s).

� Plaquette operators generate the 
stabilizer: boundary string operators.

� Closed strings compose its normalizer.

� Crossing dark and light strings 
operators anticommute.

� Encoded X-s and Z-s can be chosen 
from those closed strings which are not 
boundaries.

BZa := Z1Z2Z3Z4

BZb := X5X6X7X8



Borders

� To obtain planar codes, we need to introduce the notion of border.

� An open strings has endpoints at plaquettes of its color. The string operator 
generates violations of the corresponding plaquette stabilizers.

� Then, if a plaquette operator is missing,  strings can end at it and still be ‘closed’.

� A dark (light) border is a big missing dark (light) plaquette, where dark (light) 
strings can end. 

� Strings that start and end in the same border are boundaries.



� Imagine a quantum computer in the form of a stack of layers (Dennis et al. ’02)

� Each layer corresponds to a single-qubit encoded in a surface code.

� Measurements of the stabilizers are continuous to keep track of errors.

� CNot gates are performed in a purely transversal way, but others require code 
deformations and distillation.

� Can we find topological codes implementing other gates transversally?   Yes!

Pancake Quantum Computer

Register stack

Each register 
encodes a qubit in 
a surface codeTransversal CNot

Transversal Hadamard + 
deformations



Color Codes

Surface codes Color codes
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BZf = Z1Z2Z3Z4Z5Z6

BXf = X1X2X3X4X5X6
� Color codes are obtained from trivalent

lattices with 3-colorable faces.

� Faces are classified in red, green and blue.

� Each vertex corresponds to a qubit.

� The generators of the stabilizer are X and Z plaquette operators.

� As plaquettes, strings come in three colors.

� Strings not only can be deformed. A new feature appears: branching points.



String Operators

Surface code: 2 qubits Color code: 4 qubits

� As in surface codes, encoded X and Z operators can be chosen from closed string 
operators which are not boundaries.

� The number of encoded qubits is twice as in a surface code:

{SXb , SZg } = 0� For each colored string S, there are a pair of string 
operators, SX and SZ, products of Xs or Zs along S.

� String operators either commute or anticommute.

� Two string operators anticommute when they 
have different color and type and cross an odd 
number of times.



Borders and String-Nets

� Borders are big missing plaquettes. Their color is that of the erased plaquette. 

� Both examples encode 2 qubits, but the second requires string-net operators.

� These have a new feature, which turns out to be crucial in orther to be able to 
implement transversally the whole Clifford group:

X̄1

X̄2
Z̄1

Z̄2

X̄1
Z̄1

Z̄2X̄2

T
[SX , SZ ] = 0

{TX , TZ} = 0
S



Triangular Codes

T

d=3, n=7 d=5, n=19 d=7, n=37

� Under this condition, in triangular codes 
we can implement transversally H and K
gates because:

ĤX̂Ĥ† = Ẑ

ĤẐĤ† = X̂ K̂ẐK̂† = Ẑ

K̂X̂K̂† = ±iX̂Ẑ

� A transversal H leaves the code invariant. 
For a transversal K, this is true only if the 
vertices per face are v=4x:

ĤBZf Ĥ
† = BXf

ĤBXf Ĥ
† = BZf

K̂BZf K̂
† = BZf

K̂BXf K̂
† = (−) v2BXf BZf

� These are color codes encoding a single qubit.

� All strings in such a code are boundaries (belong to the stabilizer).

� The encoded X and Z are given by the string-net operators TX and TZ.

� The CNot is also transversal as in surface codes: both families of codes are CSS.

� Thus we can implement the whole Clifford group transversally. 

� They require less
qubits than their 
surface code 
counterparts. 



Classical Statistical Models

� Color codes can be connected with certain classical 3-body Ising models. Their 
partition function is the overlapping of a color code and certain product state:

� For honeycomb and 4-8 lattices, the model lives in triangular and union-jack lattices.

� Recall that transversal K gates are possible in 4-8 lattices but not in the honeycomb. 

� At the same time, the universality classes of the classical models are different!

� Random versions of these classical models appear in the computation of the 
threshold of color codes (work in progress).

H := −J
∑

〈i,j,k〉

σiσjσk Z(βJ) ∝ 〈Ψc|ΦP〉

Honeycomb

Triangular

Square-octogonal

Union Jack



D-Colexes

� Color codes can be generalized to higher spatial dimensions D.

� First we have to generalize our 2D lattice. Note that edges can 
be colored in accordance with faces, so that at each vertex 
there are 3 links meeting, one of each color.

� In fact, the whole structure of the lattice is contained in its colored graph: faces 
can be reconstructed from edge coloring.

Local appearance of the lattice.

S                                                P              T



D-Colexes

� In dimension D, we consider graphs with D+1 edges meeting at each vertex, of D+1
different colors. 

� Such graphs, with certain additional properties, give rise to D-manifolds. We call the 
resulting colored lattices D-colexes (for color complex).

� Of particular interest is the case D=3:

The neigborhood of a 
vertex.

The simplest 3-colex in  
projective space.



3D Color Codes

� Again one qubit per vertex, but now we have face and (3-) cell operators generating     .

� Strings are constructed as in 2-D, but now come in four colors. 

� The new feature are membranes. They come in six color combinations and, as 
strings, have branching properties. 

Cell operators Plaquette operators

BXc =
8⊗

i=1

Xi

b-string ry-membrane

MX =
⊗

Xi
membrane

SZ =
⊗

Zi
string

BZf =
4⊗

i=1

Zi

S



3D Color Codes

� Now there are 3 independent colors for strings (and 3 combinations for membranes). 

� The number of encoded qubits is 3h1 = 3h2, where hi is the i-th Betty number.

� String and membrane operators anticommute only if they share a color and the 
string crosses an odd number of times the membrane.

� Encoded X and Z operators can be chosen from closed string and membrane 
operators which are not boundaries.

Mby

Sb

{SZb ,MX
by} = 0 A pauli basis for the operators on the 3 

qubits encoded in S2xS1.

Z3

Z1

Z2

X3 X1 X2



Tetrahedral Codes

� 3-colexes cannot be constructed in our everyday 3D world keeping the locality 
structure unless we allow boundaries.

� As in 2D, borders are big erased cells and they have the color of the erased cell.

� Given a border of color c, strings can end at it if they are c-strings and membranes can 
end at it if they are xy-strings with x and y different of c.

� The analogue of triangular codes are tetrahedral codes, which encode a single qubit.

X̄Z̄ Simplest 
example

|0̂〉 :=
∏

c

(1 +BXc )|0〉 =
∑

v∈V

|v〉 |1̂〉 := X̂|0̂〉

∀v ∈ V wt(v) ≡ 0 mod 8 K̂1/2|1̂〉 = il/2|1̂〉
K̂1/2|0̂〉 = |0̂〉

l = 1, 3, 5, 7

d=3, n=15

� The desired transversal  K1/2 gate can be implemented as long as faces have 4x 
vertices and cells 8x vertices. The trick is analogous to that in Reed-Muller codes:



� A physical system showing topological order can be related to every TSC:

� For 2-colexes, the excitations are abelian anyons, because monodromy operations can 
give global phases.

� For 3-colexes, charges and fluxes exist. The topological content is related to the fact 
that charges can wind arround fluxes.

� For D-colexes, the resulting systems are brane-net condensates. The excitations are 
abelian branyons. For D>3, different topological orders are possible.

Topological Order

H = −
∑

O∈S′

O S′ = Set of local generators of S



Conclusions

� D-colexes are D-valent complexes with D-colorable edges.

� Topological color codes are obtained from D-colexes. 

� 2-colexes allow transversal Clifford gates.

� 3-colexes allow the same transversal gates as Reed-Muller codes.

� 2D color codes are related to classical 3-body Ising models.

� Brane-net condensate models arrise from color codes.


