Topological Color Codes

"Topological Quantum Distillation", Phys. Rev.
Lett. 97 180501 (2006)
"Topological Computation without Braiding", Phys. Rev. Lett. 98, 160502 (2007)
"Exact Topological Quantum Order in $\mathrm{D}=3$ and Beyond", Phys. Rev. B 75, 075103 (2007)
"Optimal Resources for Topological Stabilizer Codes", Phys. Rev. A 76, 012305 (2007)

Hector Bombin
Miguel Angel Martin-Delgado

Departamento de Física Teórica I Universidad Complutense de Madrid
"Statistical Mechanical Models and Topological Color Codes", arXiv:0711.0468

Outline

- Stabilizer codes and transversal gates
- Topological codes: Surface codes
- Color codes
- Triangular codes: Transversal Clifford gates.
- Conection with classical statistical mechanics.
- D-colexes
- 3D color codes
- Tetrahedral codes: universality.
- Topological Order

Stabilizer Codes

- A stabilizer code ${ }^{\mathbf{1}} C$ of length n is a subspace of the Hilbert space of a set of n qubits. It is defined by a stabilizer group S of Pauli operators, i.e., tensor products of Pauli matrices.
- Some stabilizer codes are specialy suitable for quantum computation. They allow to perform operations in a transversal and uniform way:

${ }^{1}$ D. Gottesman 95

Gate Sets

- Several codes allow the transversal implementation of the gates

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad K=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right) \quad \Lambda=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & X
\end{array}\right)
$$

which generate the Clifford group. This is useful for quantum information tasks such as teleportation or entanglement distillation.

- Quantum Reed-Muller codes ${ }^{1}$ are very special. They allow universal computation through transversal gates

$$
K^{1 / 2}=\left(\begin{array}{cc}
1 & 0 \\
0 & i^{1 / 2}
\end{array}\right) \quad \Lambda=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & X
\end{array}\right)
$$

and transversal measurements of X and Z.

- We will see how both sets of operations can be transversally implemented in 2D and 3D topological color codes:

Color Codes $=$ Transversality + Topology

${ }^{1}$ E. Knill et al.

Topological Stabilizer Codes

- For a TSC we mean a code in which:
a) the generators of the stabilizer are local and
b) non-detectable errors have a global (topological) nature.
- Usually we consider TSCs in which
a) qubits are placed on a surface,
b) the stabilizer \mathcal{S} is composed of boundaries and its normalizer $N_{\mathcal{S}}$ of cycles,
c) non-detectable errors are related to cycles which are not boundaries (homology...).

Topological Stabilizer Codes

- When working with stabilizer codes, it is enough to measure a set of generators of the stabilizer in order to perform error correction.
- The nice property of TSCs is their locality: one can construct arbitrarily robust codes while the generators of the stabilizer remain local and with a fixed support.
- It turns out that the best strategy to perform error correction within TSCs is to continuously measure local generators (Dennis et al. 'o2).

Surface Codes

- To construct a surface code (Kitaev '07, aka toric code), one starts from a 4 valent lattice with 2-colorable faces.
- Each vertex corresponds to a qubit.
- The generators of the stabilizer are light and dark plaquette operators:

$$
\begin{aligned}
B_{a}^{Z} & :=Z_{1} Z_{2} Z_{3} Z_{4} \\
B_{b}^{Z} & :=X_{5} X_{6} X_{7} X_{8}
\end{aligned}
$$

- Dark (light) string operators are products of Z-s (X-s).
- Plaquette operators generate the stabilizer: boundary string operators.
- Closed strings compose its normalizer.
- Crossing dark and light strings operators anticommute.
- Encoded X-s and Z-s can be chosen from those closed strings which are not boundaries.

Borders

- To obtain planar codes, we need to introduce the notion of border.
- An open strings has endpoints at plaquettes of its color. The string operator generates violations of the corresponding plaquette stabilizers.
- Then, if a plaquette operator is missing, strings can end at it and still be 'closed'.
- A dark (light) border is a big missing dark (light) plaquette, where dark (light) strings can end.
- Strings that start and end in the same border are boundaries.

Pancake Quantum Computer

- Imagine a quantum computer in the form of a stack of layers (Dennis et al. 'o2)
- Each layer corresponds to a single-qubit encoded in a surface code.
- Measurements of the stabilizers are continuous to keep track of errors.
- CNot gates are performed in a purely transversal way, but others require code deformations and distillation.
- Can we find topological codes implementing other gates transversally? Yes!

Color Codes

- Color codes are obtained from trivalent lattices with 3-colorable faces.
- Faces are classified in red, green and blue.
- Each vertex corresponds to a qubit.

$$
\begin{gathered}
B_{f}^{X}=X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} \\
B_{f}^{Z}=Z_{1} Z_{2} Z_{3} Z_{4} Z_{5} Z_{6}
\end{gathered}
$$

- The generators of the stabilizer are X and Z plaquette operators.
- As plaquettes, strings come in three colors.
- Strings not only can be deformed. A new feature appears: branching points.

Surface codes

Color codes

III

String Operators

- For each colored string S, there are a pair of string operators, S^{X} and S^{Z}, products of X s or $Z \mathrm{~s}$ along S.
- String operators either commute or anticommute.
- Two string operators anticommute when they have different color and type and cross an odd number of times.

- As in surface codes, encoded X and Z operators can be chosen from closed string operators which are not boundaries.
- The number of encoded qubits is twice as in a surface code:

Surface code: 2 qubits

Color code: 4 qubits

Borders and String-Nets

- Borders are big missing plaquettes. Their color is that of the erased plaquette.

- Both examples encode 2 qubits, but the second requires string-net operators.
- These have a new feature, which turns out to be crucial in orther to be able to implement transversally the whole Clifford group:

Triangular Codes

- These are color codes encoding a single qubit.
- All strings in such a code are boundaries (belong to the stabilizer).
- The encoded X and Z are given by the string-net operators T^{X} and T^{Z}.

- A transversal H leaves the code invariant. For a transversal K, this is true only if the vertices per face are $v=4 x$:

- Under this condition, in triangular codes we can implement transversally H and K gates because:

$$
\left.\begin{array}{rlrl}
\hat{H} B_{f}^{X} \hat{H}^{\dagger} & =B_{f}^{Z} & \hat{K} B_{f}^{X} \hat{K}^{\dagger}=(-)^{\frac{v}{2}} B_{f}^{X} B_{f}^{Z} & \hat{H} \hat{X} \hat{H}^{\dagger}=\hat{Z} \\
\hat{H} B_{f}^{Z} \hat{H}^{\dagger} & =B_{f}^{X} & \hat{K} B_{f}^{Z} \hat{K}^{\dagger}=B_{f}^{Z} & \hat{H} \hat{Z} \hat{H}^{\dagger}=\hat{X}
\end{array}\right) \hat{K} \hat{Z} \hat{K}^{\dagger}=\hat{Z} \hat{Z}
$$

- The CNot is also transversal as in surface codes: both families of codes are CSS.
- Thus we can implement the whole Clifford group transversally.

Classical Statistical Models

- Color codes can be connected with certain classical 3-body Ising models. Their partition function is the overlapping of a color code and certain product state:

$$
\mathcal{H}:=-J \sum_{\langle i, j, k\rangle} \sigma_{i} \sigma_{j} \sigma_{k} \quad \mathcal{Z}(\beta J) \propto\left\langle\Psi_{\mathrm{c}} \mid \Phi_{\mathrm{P}}\right\rangle
$$

- For honeycomb and 4-8 lattices, the model lives in triangular and union-jack lattices.
- Recall that transversal K gates are possible in 4-8 lattices but not in the honeycomb.
- At the same time, the universality classes of the classical models are different!

- Random versions of these classical models appear in the computation of the threshold of color codes (work in progress).

D-Colexes

- Color codes can be generalized to higher spatial dimensions D.
- First we have to generalize our 2D lattice. Note that edges can be colored in accordance with faces, so that at each vertex there are 3 links meeting, one of each color.

Local appearance of the lattice.

- In fact, the whole structure of the lattice is contained in its colored graph: faces can be reconstructed from edge coloring.

P

T

D-Colexes

- In dimension D, we consider graphs with $D+1$ edges meeting at each vertex, of $D+1$ different colors.
- Such graphs, with certain additional properties, give rise to D-manifolds. We call the resulting colored lattices D-colexes (for color complex).
- Of particular interest is the case $\mathrm{D}=3$:

The neigborhood of a vertex.

The simplest 3-colex in projective space.

3D Color Codes

- Again one qubit per vertex, but now we have face and (3-) cell operators generating \mathcal{S}.

Cell operators
$B_{c}^{X}=\bigotimes_{i=1}^{8} X_{i}$

Plaquette operators

$B_{f}^{Z}=\bigotimes_{i=1}^{4} Z_{i}$

- Strings are constructed as in 2-D, but now come in four colors.
- The new feature are membranes. They come in six color combinations and, as strings, have branching properties.

3D Color Codes

- Now there are 3 independent colors for strings (and 3 combinations for membranes).
- The number of encoded qubits is $3 h_{1}=3 h_{2}$, where h_{i} is the i-th Betty number.
- String and membrane operators anticommute only if they share a color and the string crosses an odd number of times the membrane.
- Encoded \mathbf{X} and \mathbf{Z} operators can be chosen from closed string and membrane operators which are not boundaries.

$$
\left\{S_{b}^{Z}, M_{b y}^{X}\right\}=0
$$

A pauli basis for the operators on the 3 qubits encoded in S2xS1.

Tetrahedral Codes

- 3-colexes cannot be constructed in our everyday 3D world keeping the locality structure unless we allow boundaries.
- As in $2 D$, borders are big erased cells and they have the color of the erased cell.
- Given a border of color c, strings can end at it if they are c-strings and membranes can end at it if they are $x y$-strings with x and y different of c.
- The analogue of triangular codes are tetrahedral codes, which encode a single qubit.

- The desired transversal $\mathbf{K}^{1 / 2}$ gate can be implemented as long as faces have 4 x vertices and cells 8x vertices. The trick is analogous to that in Reed-Muller codes:

$$
\begin{array}{rlrl}
|\hat{0}\rangle:=\prod_{c}\left(1+B_{c}^{X}\right)|\mathbf{0}\rangle=\sum_{\mathbf{v} \in V}|\mathbf{v}\rangle & |\hat{1}\rangle:=\hat{X}|\hat{0}\rangle & \hat{K}^{1 / 2}|\hat{0}\rangle & =|\hat{0}\rangle \\
\forall \mathbf{v} \in V & \operatorname{wt}(\mathbf{v}) \equiv 0 \bmod 8 & l=1,3,5,7 & \hat{K}^{1 / 2}|\hat{1}\rangle
\end{array}=i^{l / 2}|\hat{1}\rangle
$$

Topological Order

- A physical system showing topological order can be related to every TSC:

$$
H=-\sum_{O \in \mathcal{S}^{\prime}} O
$$

$$
\mathcal{S}^{\prime}=\text { Set of local generators of } \mathcal{S}
$$

- For 2-colexes, the excitations are abelian anyons, because monodromy operations can give global phases.
- For 3-colexes, charges and fluxes exist. The topological content is related to the fact that charges can wind arround fluxes.
- For D-colexes, the resulting systems are brane-net condensates. The excitations are abelian branyons. For $D>3$, different topological orders are possible.

Conclusions

- D-colexes are D-valent complexes with D-colorable edges.
- Topological color codes are obtained from D-colexes.
- 2-colexes allow transversal Clifford gates.
- 3-colexes allow the same transversal gates as Reed-Muller codes.
- 2D color codes are related to classical 3-body Ising models.
- Brane-net condensate models arrise from color codes.

