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Linking entanglement and quantum phase transitions via density-functional theory
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Density-functional theory (DFT) is shown to provide a conceptual and computational framework for en-
tanglement in interacting many-body quantum systems. DFT can, in particular, shed light on the intriguing
relationship between quantum phase transitions and entanglement. We use DFT concepts to express entangle-
ment measures in terms of the first or second derivative of the ground-state energy. We illustrate the versatility
of the DFT approach via a variety of analytically solvable models. As a further application we discuss
entanglement and quantum phase transitions in the case of mean-field approximations for realistic models of

many-body systems.
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I. INTRODUCTION

Density-functional theory (DFT) [1,2] is to date the most
successful method for first-principles calculations of the
electronic properties of solids. The key to its success is a
transformation of the dependence of the properties of a sys-
tem of interacting particles on their single-particle potential
to a dependence on the ground-state density, thereby facili-
tating useful approximations of the many-body interaction
for first-principles computations. One rather relevant phe-
nomenon in many-body physics is the occurrence of quan-
tum phase transitions (QPTs), which consist in critical
changes in the properties of the ground state, driven purely
by quantum fluctuations and effectively occurring at tem-
perature 7=0 [3]. QPTs are associated with level crossings,
which usually lead to the presence of nonanalyticities in the
energy spectrum. Specifically, a first-order QPT (1QPT) is
characterized by a finite discontinuity in the first derivative
of the ground-state energy. Similarly, a second-order QPT
(2QPT) is characterized by either a finite discontinuity or
divergence in the second derivative of the ground-state en-
ergy, assuming the first derivative is continuous.

Many-body physics and, in particular, critical phenomena
near QPTs, have recently been the subject of intense interest
from the perspective of the theory of quantum information. A
key observation is that, since entanglement describes corre-
lations in a quantum system, its quantification may provide a
convenient and precise description of a QPT. Indeed, en-
tanglement has been found to exhibit scaling behavior near a
critical point [4—6]. Moreover, under well-delineated condi-
tions and for distinguishable systems up to two-body inter-
actions, a formal relationship between QPT and bipartite en-
tanglement was recently established [7]. Here, we show that
entanglement may be well specified and conveniently com-
puted within DFT. In DFT, any entanglement measure is a
function(al) of the expectation values of the observables.
This procedure introduces a direct connection between en-
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tanglement and the derivatives of the ground-state energy of
the quantum system with respect to the field coefficients,
leading to a deep relationship between entanglement and
QPT.

II. GENERALIZED HOHENBERG-KOHN (HK) THEOREM
AND ENTANGLEMENT

Consider a quantum system described by a Hamiltonian
composed of two parts

H=Hy+He=Hy+ 2 NA, (1)
1

where \,; is the “field coefficient” (control parameter) associ-

ated with a set of Hermitian operators {Al}, e.g., an observ-
able relevant to driving a quantum phase transition. The in-
dex [ can be discrete or continuous. The expectation values

of A, for a ground state |¢) are denoted by the set {a;}

={(ylA|p)}.

DFT is originally based on the Hohenberg-Kohn (HK)
theorem [1]. In the case of a many-electron system, the HK
theorem establishes that the ground-state electronic density
n(r), instead of the potential v(r), can be used as the funda-
mental variable to describe the physical properties of the
system. In the case of a Hamiltonian given by Eq. (1), the
HK theorem can be generalized to the statement that there is
a duality (in the sense of a Legendre transform) between the
set of expectation values {a;} [corresponding to n(r)] and the
set of field parameters {\;} [corresponding to v(r)] [8]. The
commutativity of the densities at distinct points,
[7A(r),7A(r")]=0 for r#r’, is a property of the original HK
theorem. In a lattice system, we require that the physical
observables {A;} on different sites be mutually commuting
operators. This not only allows different observables on the
same site, e.g., S7,5), to be noncommutative, but also, for
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later use, endows a function of observables on different sites
with a single site locality, such as the set of two site opera-
tors, {A,A.,.}, [ ranging over all sites and ¢ being a constant.
It follows from the Legendre transform that the ground-state
expectation value of any observable can be interchangeably
viewed as a unique function of either {\;} or {a;}. (See Ap-
pendix A for a simple proof of the HK theorem in a lattice.)
Such a general duality has allowed for the application of
DFT in, e.g., interacting quantum spin systems [9]. More-
over, as we show below, it can provide a natural connection

between entanglement and QPT. Indeed, using the
Hellmann-Feynman theorem [10,11],
oE oH R
— =) =(hA|P) =aq. 2
o= o =l =a, @

This means that the set of observables {dH/d\;} has a direct
linear relation with {a;}. An example is the metallization of a
semiconductor under pressure to a value at which the band
gap given by the discontinuity of the density-functional de-
rivative of the ground-state energy goes to zero [12,13].

The HK theorem can be used to redefine entanglement
measures in terms of new physical quantities: expectation
values of observables {a;} instead of external control param-
eters, {\;}. Consider an arbitrary entanglement measure M
for the ground state of Hamiltonian (1). We will focus here
on bipartite entanglement, but our discussion applies equally
well to multipartite measures. We then prove a central
lemma, which very generally connects M and energy deriva-
tives.

Lemma. Any ground state entanglement measure M can
be expressed as a unique functional of the set of first deriva-
tives of the ground-state energy:

JE
M=M({a}) :M({&—MD, (3)

assuming that the ground state is nondegenerate.

Proof. Intuitively, the proof follows from the fact that,
according to the generalized HK theorem, any ground-state
wave function |¥) is a unique functional of {a;} and since
|W) provides a complete description of the state of the sys-
tem, everything else is a unique functional of {a;} as well,
including M. More formally, let us consider the case of pair-
wise entanglement of qubits. The case of higher-dimensional
systems or multipartite entanglement is a direct generaliza-
tion. Then (A) M;; (entanglement measure between qubits i
and j) is always a function f of the matrix elements of the
two-qubit reduced density matrix p;;: M;;=f(p;). (B) The
matrix elements p;; are combinations of correlation functions
(o)) =Tr(c}d)p;), where a,b=0,....,3, with oy=1 (iden-
tity). This follows from an expansion of p;j in the Pauli basis
{a'j-’cr;’}. (C) From steps A and B it follows that M
=M ((of’olj’ )). However, by using the HK theorem for nonde-
generate ground states, any expectation value can be taken as
a function of {a,}, since the wave function itself is a function
of {a;} (see, e.g., Ref. [8]). Therefore, M=M({a;}), as re-
quired. |

Note that the nature of the fixed Hamiltonian H,, is mani-
fested in Eq. (3) through the limit A\;— O for all /. The value
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attained by M in this limit is the ground state entanglement
generated by H,. In Ref. [7], relations similar to Eq. (3),
which connects entanglement and 1QPTs, were established at
the critical point for several examples of multi-particle sys-
tems, up to two-body interactions. In DFT, Eq. (3) holds for
arbitrary systems, and not only close to the critical point.
While the HK theorem is also applicable to degenerate
ground states [15,16], not all linear combinations of densities
corresponding to degenerate ground states are permissible
when implementing the variational principle [17]. Note also
that systems described by either Fermi or Pauli operators can
be considered using DFT. Indeed, the treatment of both cases
can be unified by the Jordan-Wigner transformation [14],
with H, H,, and H,, expressed in terms of linear combina-
tions of generators of SU(2V), where N denotes the number
of sites in the case of spins in a lattice, or the number of
single modes for Jordan-Wigner fermions.

Moreover, the HK theorem implies that one can split up
the Hamiltonian (1) in different ways. For example, a new

H, might include part of the sum E)\,A,. In our discussion, it
is often convenient to focus on one of the external operators
by moving the others into H,,.

For 2QPTs, we should examine the derivatives of M. For
simplicity of exposition, we regard one of the parameters \;
as an independent variable, which we denote by A\, and con-
sider all the others as part of H,. Therefore, M can be seen as
an exclusive function of \, yielding via Eq. (2)

M M da M FPE
—=— =" (4)

Notice that this equation holds only for nondegenerate
ground states, since for the case of degeneracy, although the
density a still uniquely specifies the potential A, the potential
N\ does not uniquely specify the density a anymore. There-
fore, in the degenerate case, a cannot be taken as a function
of N\, which implies that the chain rule used to take the de-
rivative in Eq. (4) is not valid. However, as long we restrict
ourselves to nondegenerate states (as is the usual case for
large finite systems tending to criticality), or approach the
(critical) degeneracy point from below or above, this prob-
lem can be avoided. In the case where the degeneracy is
symmetry driven, we could also circumvent this problem by
observing that degenerate states can be split by a symmetry-
breaking term which is then allowed to tend to zero in the
study of QPTs.

Equation (4) shows that an entanglement measure is pro-
portional to the second derivative of energy as long as
dM/da#0. By using appropriate bipartite entanglement
measures, 2QPTs have usually been identified so far through
either nonanalytic or vanishing values of dM/J\ at the criti-
cal point. Both cases are contained in Eq. (4).

It should be emphasized that Egs. (3) and (4) hold for any
system described by the Hamiltonian (1) as long as DFT is
valid, in the degeneracy sense discussed above. Around the
critical points, the left and right limits of the two equations
still hold even if the DFT is questionable at the critical point.
Equations (3) and (4) can be seen as the basic equations for
the relation between QPTs and entanglement.
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III. EXAMPLE I: ONE-BODY EXTERNAL COUPLINGS

As a first example of the applicability of Egs. (3) and (4),

let us consider H.,=3\;-d;, which represents a system of
qubits acted upon via independent single-qubit control terms.
According to DFT, the energy is a functional of matrix ele-
ments of one-spin reduced density matrices, i.e., E=E({p;}),

where p;=(|G,|#)=V,E is the Bloch vector, with compo-
nents pf'=(i{o"|¢y). We consider a bipartition of the system,
splitting it up into two parts. Then, assuming that the system
is in a pure state, we can use the linear entropy as a measure
of block entanglement, which reads L“@=[d/(d-1)](1
~Trp?), where O0<L@<1 and p denotes a
(d X d)-dimensional density matrix. Explicit computation of
the block entanglement of one qubit (the ith) with the rest of

system yields Ll(.z)= 1-|p*=1 —V:E- V:-E, which is a function
of the parameters X. In the case of fermions, we replace the
Pauli matrices by fermionic operators according to the
Jordan-Wigner transformation. Then, ng): 1-(JE/ N ,;)*
(number conservation law for fermions implies the vanishing
of JE/d\,; and JE/N,;).

In the case of a 1QPT, characterized by a discontinuity in
V,E, we have a corresponding discontinuity in Ll@ unless

V,E-V,E is continuous. Therefore, in this case, when all \;
are taken as independent external parameters, the entangle-
ment measure sz) is an analytic function of the first deriva-
tives of the energy, yielding a natural relationship between
1QPTs and ng). A general discussion of 2QPTs is, on the
other hand, not as straightforward, since the structure of the
derivatives of Ll(.z) will depend on the details of the model.
Thus, it turns out to be more useful to analyze a concrete
example. Let us consider the transverse field Ising chain,
where H=-3 (0707}, +\d?), with N denoting the number
of spins along the chain and with cyclic boundary conditions
assumed. In this model, a discussion of entanglement as a
function of the coupling N was first presented in Refs. [4,5].
Due to translational symmetry we have p.=(¢|o%|¢)
=de/ o\, where e=FE/N. Therefore AL® [ o\
=(dL®/dp,) e/ IN?. Divergence of e/J\? at the quantum
critical point A=1 will thus result in that of AL® [ o\ unless
AL/ dp,=0, which is not the case in this example. This is
demonstrated in Fig. 1, where we plot L® as a function of [
Both the maximum and the singularity of the derivative oc-
cur at the critical point. We can also apply the DFT approach
to pairwise entanglement measures. For instance, let us con-
sider entanglement between nearest-neighbor pairs in the
transverse field Ising model as measured by the negativity A/
[18]. From Eq. (4) we have dN7/dN=(3N/dp,)#elIN*. No-
tice that the divergence in #&/d\? at the critical point natu-
rally leads to a divergence in N7\, since IN/dp, is a non-
vanishing function at the QPT, as shown in Fig. 2. In fact, the
maximum of JA7/dp, approaches the critical point as the
number of sites increases.

IV. EXAMPLE II: TWO-BODY EXTERNAL COUPLINGS

In the case of two-body external couplings, we take H.,,

=3 \jojo}, where ae{x,y,z}. This Hamiltonian repre-
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L2 b)

FIG. 1. (Color online) Block entanglement L) as function of P,
for the transverse field Ising model. The maximum occurs at the
quantum critical point, where p,~0.6366.

sents a system of qubits controlled externally via two-body
interactions. Entanglement between qubits i, j and the rest of
the system can then be computed by taking the linear entropy
LY for d=4. This yields L(4)=l—%2(aE/&)\fj‘-)2. We now
analyze the behavior of L® in some important models ex-
hibiting QPTs. For example, for the XXZ spin chain, we have
H=(-1/2)=N(o}0},, + Vo), +Aoi05,;),  where  cyclic
boundary conditions are assumed. The external Hamiltonian
is taken as H,,=—(A/2),0%0%,,. Direct evaluation of L
then yields (see Appendix B)

4 A\ 9e\* & de
LW=1-~ (1 —)(—) ——eA—|, (5
3{ "o N\aa) T2 %% ©)

where e=E/N. Notice that L is a function of the DFT
variable a=(o707,,)=-2(de/JA) since, due to the HK theo-
rem, the energy density & can be taken as a function of a.
Thus, discontinuities in (de/JA) will be directly reflected in
L™, This model exhibits two distinct QPTs, which occur at
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FIG. 2. (Color online) Derivative of the negativity with respect
to p, for the transverse field Ising model. The maximum approaches
the quantum critical point, where p,~0.6366.
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A=1 and A=-1. In order to evaluate L™, we consider the
ground-state wave function with vanishing magnetization,
which favors the presence of entanglement in the system. A
1QPT occurs at A=1, which separates a ferromagnetic phase
from a gapless quasi-long-range-ordered phase. At this ferro-
magnetic critical point, the energy density as N— o is con-
tinuous, and is given by e(A=1)=-1/2[19,20]. However, its
first derivative is discontinuous, with (de/dA),_,;+——1/2
and (de/dA)x_.;-—0. From Eq. (5), we can see that this
discontinuity is immediately manifested in the entanglement
measure, since L¥ jumps from 2/3 to 5/6 at A=1. A con-
tinuous QPT in the XXZ chain occurs at A=—1, separating
the gapless quasi-long-range-ordered phase from the antifer-
romagnetic phase. For this case, it is useful to compute the
first derivative of L with respect to A, which yields
(LD 16A)= (LD ] da)(Pel IA?), with LW/ da=3[eA-2(1
+A?/2)de/ JA]. The QPT in this case is not directly signaled
by (é%e/dA?), which is analytic at A=—1 [19,20]. However,
entanglement detects this transition as an extremum at the
critical point [21-23]. This behavior is also reflected in terms
of the DFT variable a. We have &(A=-1)=2(In2-1/4)
[19,20], and find for the first derivative of the energy
(el 0A)5_._1=0.2954. Therefore, we obtain (9L™/da)
=(aL™/9A)=0.

We now analyze the behavior of L™ in a Fermi system.
An interesting example is then the one-dimensional Hubbard
model Hey=UZ 140, , Where n, (n,) is the spin-down
(-up) electronic number at site «. The Hubbard model de-
scribes a metal-insulating transition, which has been consid-
ered from the point of view of entanglement in Refs. [24,25].
We can rearrange the indices for the modes a and «| into
nearest-neighbor indices i and i+ 1, respectively, in a linear
lattice. Therefore, the Hamiltonian can be written as H
=UZn,;_n,; where only the pairs of sites (1,2), (3.4), etc.,
interact with each other. We can then compute L™ between
an interacting pair (i,i+1) and the rest of the system (see
also Refs. [24,25]). At half filling, L<4>——(1 +4a-8a”) (for
any i) (see Appendix C). Then dL¥/ (9(1—‘(4 16a). By us-
ing Eq. (4), we obtain LW /aU=(aL™/ (?a)&zs/ dU?. At the
critical point U=0, which separates an insulating phase from
a metallic phase, the first derivative of L*) with respect to U
is JLW/9U=0 [24]. In terms of the new variable a, we can
show that the QPT in the Hubbard model is also identified
via an extremum of L. Indeed, for U=0, we have a=1/4
[26] which then implies d,L*=0.

V. THE LIPKIN MODEL: A HARTREE-FOCK APPROACH
TO ENTANGLEMENT

Most realistic physical many-body problems cannot be
solved analytically. Linear approximations, such as Hartree-
Fock-Bogoliubov theory and the random-phase approxima-
tion, are often practical and effective ways to treat these
systems, since these procedures change an intractable
2N_dimensional problem to a tractable N’>-dimensional one.
In this case, it is appealing to introduce new and simple
quantities, e.g., L® and LW, as measures characterizing the
quantum-information content of these known approximate
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wave functions. We expect these quantities to become as
important as, e.g., binding energies, when quantum informa-
tion becomes readily accessible to experiments.

As an example, we consider the Lipkin model—
important, e.g., in nuclear physics—whose Hamiltonian
reads H=\S,—(1/N)(s>- SZ) where  S.=3N_ 2(cl, com
—cimc ) and S,+iS, EN c_m [27] (for a discussion of
entanglement in the L1pk1n model see also Ref. [28]). This

>}

each level having degeneracy N. The operators el m and el
create a particle in the upper and lower levels, respectlvely
Alternatively, the Hamiltonian may be viewed as a one-
dimensional ring of two-level atoms with infinite-range in-
teraction between pairs. The factor 1/N in the interaction
term keeps the scaling of both terms in H linear in N. The
phase transition studied is in the limit of N—oc. The Lipkin
model is exactly solvable (see, e.g., Ref. [29]). The Hartree-
Fock (HF) ground state, which is exact for this model as N
tends to infinity, is given by [HF)=I1"_,a} |-), where a},, is
defined by the following change of variables: cim
=sin aa$m+cos aajlm and ¢’ . =COS aaOm sin aa}m The
variational parameter a which yields the minimum energy is
given by cos 2a=N when A<1 and =0 when A=1. We
define the DFT variable a=de/d\, with e=E/N denoting the
energy per particle. For the HF ground state, we then obtain
a=-N/2 for A\<1 and a=-1/2 for A\=1. It is easy to show
that ¢?e/d\? is discontinuous at A= 1, which corresponds to
a=-1/2 in terms of the DFT variable. Let us analyze
whether this discontinuity is reflected in the derivatives of
the entanglement measures, as given by Eq. (4). For four-
dimensional block entanglement, it is convenient to consider
the entanglement between a block composed of two general
modes (+m,-n) and the rest of the system, which yields
ijr)l _,=(2/3)(1-4a*(1-6,,), where &, is the Kronecker
symbol Therefore, the block (+m,—n) is entangled with the
rest of system only if m # n. Taking the derivative, we obtain
((9L(:tn _,19a),_1,=81/3 (m# n). Therefore, from Eq. (4), the
nonanalytlclty of Pe/IN? at the crltlcal point will be associ-
ated with a nonanalyticity in oL +m _,/N (m#n). A similar
result follows in the case of two-dimensional block entangle-
ment, where we have L@ =1-44 for a general mode +m (or
—m) with the rest of the system. Pairwise entanglement be-
tween general modes +m and —n as measured by the nega-
tivity is found to be NV,,, _,= V1-442 6,.,- Notice that this is
in contrast with block entanglement, where modes +m and
—n only are entangled for m # n. This difference is due to the
structure of the HF ground state, which implies that the
modes +m and —n interact only for m=n. Therefore, bipartite
entanglement in the system appears only when +m and —m
are in different parts. Evaluating now the derivative of the
negativity we obtain (dN,,, _,/da), ._1p—. Thus,
INp._n! O\ is nonanalytic at the critical point.

VI. CONCLUSION

We have shown in general and illustrated in a number of
models that DFT provides a natural link between entangle-
ment and QPTs. Since experimental data are taken at finite
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temperature, it is important to be able to delineate the tem-
perature fluctuation around a classical critical point versus
the quantum fluctuations around a QPT. The exploration of
finite-temperature DFT [30] for the connection between
phase transitions and quantum information appears to be a
promising direction for future study.
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APPENDIX A

We provide here a proof of the HK theorem in a lattice,
based on the variational method (for a proof based on the
constrained-search technique [15], see Ref. [8]). Let us con-
sider two sets of parameters {\;} and {\;}, which define two
Hamiltonians as follows:

H=Hy+ 2 NA, H' =Hy+ > \A, (A1)

! 1
The ground states of H and H' will be denoted by |#) and
|¢'), respectively, which are taken as nondegenerate, even
though the proof can be extended for degenerate ground
states [15,16]. We also assume here that, for different sets of
parameters {\;}#{\,}, we have independent ground states
|4 # a|i'y (a=const). This is indeed the usual behavior of
quantum systems around criticality, where the ground state
varies continuously as we vary the control parameters. By
applying the variational principle for the Hamiltonian H', we
obtain

(1) < ) = o+ 3 O =2 .
1
(A2)
Therefore, Eq. (A2) yields

E{ < Eo+ X (\ = \)ay, (A3)
1

where Ej and E, are the ground-state energies of H' and H,
respectively, and a;=(i|A;|). Analogously, by applying the
variational principle for H, we obtain

Ey<Ej+> (\=\))a]. (A4)
!

with a; =(/|A;|¢/). From Egs. (A3) and (A4) we have
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0< > (\ = \)(a—aj). (A5)
1

Hence, if the sets of parameters {\;} and {\/} are different
from each other, then we cannot have identical sets {a;} and
{a/}. Therefore, the density {a,} uniquely specifies the poten-

tial {\;} and can then be used as the basic variable to describe
the properties of the system.

APPENDIX B

We provide here the basic details of the evaluation of the
linear entropy for the XXZ model. The density matrix for a
pair of nearest-neighbor sites in the ground state of the XXZ
chain can be written as

A 0 0 O
0O B CO B1)
P=lo cB o
0 0 0D
where, from the XXZ Hamiltonian, we obtain
1 de 1 de
A=D=—<1—2—), B=—<1+2—>,
4 oA 4 oA
1 de
C=——|le-A—|. B2
2(8 &A) (B2)

Equations (B2) allow for a direct calculation of the linear
entropy L@ =(4/3)(1-Trp?), yielding the result displayed in
Eq. (5).

APPENDIX C

We provide here the basic details for the evaluation of the
linear entropy in the Hubbard model. Translation invariance
and simultaneous conservation of particle number N
.:Zj(njﬁnjl) and z component of total spip SzzE.j(nﬂ—njl)
imply that the density operator for any single site can be
represented by a 4 X4 diagonal matrix, whose eigenvalues
are given by

de

W=y, )= — =a,

ut=(ny,)-w,
U ()

z=1l—-ut—u —w.

(C1)

At half filling, we have (n,)=(n,)=1/2. Therefore, in this
regime, all the eigenvalues can be expressed in terms of the
density a=(n,n,|). Then, the evaluation of the linear en-
tropy L™ (a) follows straightforwardly.

u = <nal> -Ww,
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