People

Evgeny Mozgunov

Evgeny Mozgunov received his Ph.D. in Physics from Caltech.  During his Ph.D. research, he studied his advisor Alexei Kitaev’s work on classification of interacting topological phases.   That inspired a mathematical physics result defining the concept of a local gap of a hamiltonian.   His thesis research involved the study of many-body localization and translating some of the results of condensed matter physics into the language of quantum information.  As a Research Associate at the University of Southern California, his research activities focus on the simulation of open system quantum dynamics.  He has also supervised five summer students on projects ranging from machine learning to thermalization and error-correcting codes.

Room: SSC 606
Email: M O Z G U N O V AT U S C DOT EDU

Peer Reviewed Publications

  • 5. “Dissipative Landau-Zener tunneling in the crossover regime from weak to strong environment coupling”, Nature Communications 16, 329 (2025), by X. Dai, R. Trappen, H. Chen, D. Melanson, M. A. Yurtalan, D. M. Tennant, A. J. Martinez, Y. Tang, E. Mozgunov, J. Gibson, J. A. Grover, S. M. Disseler, J. I. Basham, S. Novikov, R. Das, A. J. Melville, B. M. Niedzielski, C. F. Hirjibehedin, K. Serniak, S. J. Weber, J. L. Yoder, W. D. Oliver, K. M. Zick, D. A. Lidar & A. Lupascu. [link]
  • 4. “Quantum adiabatic theorem for unbounded Hamiltonians with a cutoff and its application to superconducting circuits”, Phil. Trans. R. Soc. 381: 20210407 (2023), by E. Mozgunov and D. A. Lidar [link]
  • 3. “Completely positive master equation for arbitrary driving and small level spacing”, Quantum 4, 227 (2020), by E. Mozgunov and D. A. Lidar [link]
  • 2. “Excitation spectrum of a two-dimensional long-range Bose liquid with supersymmetry”, Phys. Rev. B 83, 104515 (2011), by E. V. Mozgunov and M. V. Feigel’man [pdf]
  • 1. “Local gap threshold for frustration-free spin systems”, J. Math. Phys., Volume 57 Number 9 (2016), by D. Gosset and E. Mozgunov [pdf]

Preprints

  • 9. “ClassiFIM: An Unsupervised Method To Detect Phase Transitions”, [2408.03323] by V. Kasatkin, E. Mozgunov, N. Ezzell, U. Mishra, I. Hen, D. A. Lidar.
  • 8. “Detecting Quantum and Classical Phase Transitions via Unsupervised Machine Learning of the Fisher Information Metric”, [2408.03418] by V. Kasatkin, E. Mozgunov, N. Ezzell, D. A. Lidar.
  • 7. “Applications and resource estimates for open system simulation on a quantum computer”, [2406.06281] by E. Mozgunov
  • 6. “Precision of quantum simulation of all-to-all coupling in a local architecture”, [2302.02458] by E. Mozgunov
  • 5. “Demonstration of long-range correlations via susceptibility measurements in a one-dimensional superconducting Josephson spin chain”, [2111.04284] by D. M. Tennant, X. Dai, A. J. Martinez, R. Trappen, D. Melanson, M A. Yurtalan, Y. Tang, S. Bedkihal, R. Yang, S. Novikov, J. A. Grover, S. M. Disseler, J. I. Basham, R. Das, D. K. Kim, A. J. Melville, B. M. Niedzielski, S. J. Weber, J. L. Yoder, A. J. Kerman, E. Mozgunov, D. A. Lidar and A. Lupascu
  • 4. “Quantum adiabatic theorem for unbounded Hamiltonians, with applications to superconducting circuits”, [2011.08116], by E. Mozgunov and D. A. Lidar
  • 3. “Spectral gaps of frustration-free spin systems with boundary” [1801.08915] by
    Marius Lemm, Evgeny Mozgunov
  • 2. “Local Master Equation for Small Temperatures”, [1611.04188], by E. Mozgunov
  • 1. “Area law in the exact solution of many-body localized systems”, [1708.08069], by E. Mozgunov