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Abstract: We review our work concerning a method of decoherence control via concatenated
dynamical decoupling (DD) pulses. These recursively nested DD pulse sequences exhibit a fault-
tolerance threshold similar to that of concatenated quantum error correcting codes. We briefly
discuss how quantum logic gates can be incorporated into this framework.
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1 Introduction

Ideal quantum computers are fully controllable and isolated systems with a tensor product structure. Realistically neither
controllability, isolation, nor even the tensor decomposition can be achieved easily in laboratory settings. Quantum oper-
ations tend to be faulty and furthermore the environment interacts with the system and produces undesirable decoherence,
thus reducing the fidelity.

Dynamical decoupling (DD) is one of the (in-principle) universal methods originally introduced in order to overcome
decoherence-errors [1], but not faulty controls. The method has been known and used in nuclear magnetic resonance
(NMR) under different names and manifestations essentially ever since the Hahn spin echo experiment [2], for decoupling
or recoupling of various interactions between nuclear spins. DD uses repetition of fast and strong pulses that effectively
weaken undesired parts of the Hamiltonian, including couplings to an unknown environment, so as to reduce decoherence
and increase fidelity. The theoretical considerations are often accompanied by the requirements that the pulses need to
be, ideally, of zero width, and the period of the pulse-cycle has to be smaller than the system-bath evolution periods and
decoherence time [3]. It has been further shown that in principle it is possible to use bounded-strength (yet strong) pulses
[4]. It must be stressed that, with the exception of [4], schemes involving periodic pulse sequences have largely ignored
the consequences of pulse imperfections.

In contrast, in quantum error correcting codes (QECCs), it is possible to address imperfections via concatenation. This
is a technique in which the self-similar structure of recursively combined codes allows for an error-rate threshold below
which arbitrary protection might be achieved [5]. In the non-Markovian noise regime the error correction threshold is much
more stringent [6], while DD provides far less resource-hungry protection, demanding only fast pulses. This renders DD
particularly appealing for solid-state semiconductor spin-based QIP implementations, where coupling to spin impurities
constitutes an important and rate-limiting non-Markovian source of decoherence [7].

Completing the analogy between DD and QECCs, we review our work [8] that introduces a concatenation scheme for
generating significantly more robust and effective DD pulse sequences than the previously known schemes based on serial
DD (SDD) [1, 4]. We discuss concatenated DD (CDD) for bounded-spectrum baths (such as a spin-bath), using bounded-
strength controls, while assuming a realistic control scenario. We also hint at ways of incorporating quantum logic gates,
as required in a quantum computer subject to dynamical decoupling.
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2 Dynamical decoupling and Concatenation

Our main focus is the concept of an “effective Hamiltonian” associated with a propagator (unitary evolution operator) for
a system. We assume that the system’s Hamiltonian is the sum of intrinsic (H int

S ) and time-dependent controllable (HP )
Hamiltonians. We denote by He the “else” Hamiltonian: the sum of all non-controllable terms including those describing
the system-environment interactions in the larger system plus bath Hamiltonian. Ideal pulses refer to propagators cor-
responding to unitary evolutions of the system only. Non-ideal pulses includes two sources of errors in navigating the
quantum system: (i) Random or systematic deviations (WP ) from the intended HP . (ii) The presence of He during the
pulse. While it is possible to formulate DD in terms of general Hamiltonian interactions, here we focus on a qubit system
where any Hamiltonian can be written as

He = X ⊗ BX + Y ⊗ BY + Z ⊗ BZ (1)

where X, Y , and Z are Pauli operators on the system and the B i are environment operators (tracefull terms are ignored:
they have no dynamical effect). The simplest SDD scenario is the “parity kick”, which we shall refer to as canonical DD:
Consider the repetition of the pulse sequence XfτXfτ , where X denotes the application of the pulse X , and f τ denotes
a pulse-free evolution period of duration τ . If the X pulse acts ideally the action of the pulse produces the following
propagator for the system and the environment: IE = X exp(−iτHe)X exp(−iτHe) = exp(−iτXHeX) exp(−iτHe),
and ignoring O(τ 2H2

e ), we can write IE = exp(−i2τHeff), where Heff = (XHeX + He)/2. Universal decoupling is
achieved when Heff = 0. This is achieved for a qubit by including two smaller canonical DD cycles inside another one:

Y f2τ
︸︷︷︸

ZfτZfτ

Y f2τ
︸︷︷︸

ZfτZfτ

= XfτZfτXfτZfτ , (2)

which transforms He into an effective Hamiltonian that vanishes up to O(τ 2H2
e ).

Using Eq. (1), it is not hard to see that the X canonical cycle has a geometric interpretation as the projection of the
3-dimensional vector-like quantity (BX , BY , BZ) onto the x axis. Similarly nesting the Y and Z cycles corresponds to
successive projections of a vector onto the y and z axes, resulting in universal decoupling: H eff = 0. A simple application
of the BCH formula shows that the O(τ 2H2

e ) terms also have a geometric interpretation as rotations following each
projection: the effective Hamiltonian of a Pi canonical cycle is given up to O(τ 3H3

e ) by Heff,

1
2
Heff,i = : DPi(τ)[He] = exp(−iτH⊥

i /2)H‖
i exp(iτH⊥

i /2) + O(λ3), (3)

where H
‖
i (H⊥

i ) is the component of He that (anti-)commutes with Pi (which is exhaustive for qubit systems), and λ3
i :=

τ3‖H⊥
i ‖2‖H‖

i ‖ � 1. This extra rotation produces extra terms besides H
‖
i , hence imperfect DD. Despite the imperfection,

this mapping cannot increase the magnitude of He, and typically decreases it [8].
One can now envisage a scheme in which multiple canonical cycles are nested inside each other and rapidly decrease

the magnitude of He, and thus provide a systematic decoupling. Each universal DD cycle consists of a concatenation of
canonical DDPS. We call this the “inner concatenation”. Formally, the different canonical cycles in an inner concatenation
exhaust all possible terms in He, should there be no rotations like Eq. (3). Once an inner concatenation cycle is found,
these pulse cycles can now be concatenated within one another, while keeping the total experiment time T ∝ τ fixed to
obtain higher order pulse sequences ps(n). Here are the first two examples, simplified using Pauli-group identities:

ps(1) = XfZfXfZf

ps(2) = X ffff
︸ ︷︷ ︸

ps(1)

Z ffff
︸ ︷︷ ︸

ps(1)

X ffff
︸ ︷︷ ︸

ps(1)

Z ffff
︸ ︷︷ ︸

ps(1)

= fZfXfZfYfZfXfZffZfXfZfYfZfXfZf (4)

Clearly, given a fixed duration τ , the pulse-free periods inbetween the pulses rapidly shorten, and given the actual
pulse-width lower bound it is impossible to perform an arbitrarily high-order CDD. Furthermore, the number of pulses
increases exponentially with the order of concatenation. While practically this is an issue, we can show that in the limit
of zero-width pulses the success of CDD scales super-exponentially well, using an exponential number of pulses, thus
providing an effective exponential advantage in terms of the number of pulses used. The “error”-phase associated with
the effective Hamiltonian corresponding to deviation from ideal evolution (a simple measure of infidelity), satisfies [8]:
|ΦCDD| ≤ 4−[(2n−1)2n+1]‖τH0‖2n

, where n is the number of concatenation levels and H0 = He is the “else” Hamiltonian
before concatenation. A similar analysis for SDD, using the same number of pulses and minimum switching times yields
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‖ΦSDD‖ ≤ 4−n‖τH0‖2. Thus, while an exponential number of pulses is used, CDD converges super-exponentially, while
SDD is only exponentially convergent. This difference is very similar to that between concatenated and serial QECC [5],
and is indeed our motivation for CDD. While the above approximations are only suggestive in the case of finite-width
pulses, our simulations show that there can be a saturation level for SDD after which squeezing in more pulses will not
improve SDD at all, whereas CDD continues to improve [8].

3 Non-ideal pulses, Fault-tolerance and Computation

In practice every pulse has a non-zero width during which control jitters and H e produce deviations from the ideal action.
Such deviations must be made small to allow for successful CDD. We give an upper bound on how these errors may
be tolerated in a CDD pulse sequence, based on our geometric picture of the mapping of the Hamiltonians. The errors
associated with imperfect pulses cause deviations in the effective Hamiltonian at each level of concatenation. They can
thus be combined into the effective Hamiltonian after each level of concatenation (starting with the ones with shortest
periods), and can thus can be removed by the next level of concatenation, if they are small enough. The condition is [8]:

δ(γ||He|| + 〈|wP |〉 ||HP ||) � τ ||He||, (5)

where γ ≈ 1, ‖WP ‖ = |wP | ‖HP‖, wP is a dimensionless measure of the control jitter and δ is the pulse width. The
left-hand side of this inequality gives the undesired phase accumulated during the pulse, which must be smaller than the
phase due to H⊥ (and hence He) accumulated during the free evolution. This must hold at every level of concatenation, in
particular the deepest level where τ is smallest.

Should the above requirements be met, we would next like to consider incorporating quantum logic operations, allowing
for fault-tolerant quantum computation. There seem to be several ways of doing this, and we mention one in this summary
that uses an encoding of one qubit into a stabilizer code [9]. Stabilizer codes have the property that they detect any error that
anticommutes with an element of the stabilizer. Such anticommutation is precisely the property required for a canonical
DD cycle. It therefore turns out that for all stabilizer codes used for QECC, the stabilizer elements can be used as DD
pulses to generate canonical DD cycles, providing DD of QECC codewords. Quantum operations can now be incorporated
into the free evolution periods and can be made fault-tolerant, if the source of the errors is Hamiltonian coupling to a
bounded environment. The stabilizer formalism and the encoding in this case are crucial, for otherwise DD practically
removes all propagators from the system, including the unitary operations needed for quantum computation. The effect of
DD in the encoded case is to bring the dynamics of the system as close as possible to a unitary operator on the encoded
subspace, by removing all the error terms.
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