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We develop the concept of quantum carrier and show that messages can be uploaded and

downloaded from this carrier and while in transit, these messages are hidden from external

agents. We explain in detail the working of the quantum carrier for different communication

tasks, including quantum key distribution, classical secret and quantum state sharing among a

set of n players according to general threshold schemes. The security of the protocol is discussed

and it is shown that only the legitimate subsets can retrieve the secret messages, the collab-

oration of all the parties is needed for the continuous running of the protocol and maintaining

the carrier.
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1. Introduction

Entanglement has been used in many different protocols of quantum information

theory, from teleportation and key distribution to secret sharing.1�13 In all these

protocols, entanglement is a resource which is completely consumed by measure-

ments of the parties involved and should be generated anew for next rounds of

protocol. It is true that generating and maintaining entanglement between several

particles is very difficult. Yet with the developments in realizing quantum

repeaters,14�16 creating and maintaining long distance entanglement between

stationary quantum systems becomes more feasible in the (possibly distant) future.

It is thus rewarding to imagine if this entanglement can be used in a different

way, that is as a carrier of information, which modulates and transmits quantum
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information, in the same way as carrier waves in classical communication systems

carry modulated messages. In this new application, we can imagine that arbitrary

quantum states are uploaded (entangled) to the carrier by the sender and down-

loaded (disentangled) from the carrier by the receiver(s), in such a way that at the

end of the protocol, the carrier remains intact and ready for use in next rounds. The

role of the quantum carrier and its entanglement with the messages will be to hide

messages from adversaries, hence the term secure quantum carrier.

This new way for using entanglement was first reported in Ref. 17 for quantum

key distribution and then was developed for a simple secret sharing scheme in

Refs. 9�11. In this paper we want to develop it further and provide quantum

carriers for secret sharing schemes for general threshold schemes.18,19 Needless to

say, our aim is not to develop new quantum secret sharing schemes, but to develop a

quantum carrier for distributing in a secure way the already known quantum secrets

among the parties. Our emphasis is thus on the very concept of secure quantum

carrier and the way it can be used in quantum communication protocols. In the

particular context of quantum secret sharing, as we will see it allows us to generate

broader threshold schemes than those of Refs. 20 and 21.

In particular we have to stress the difference with the works in Refs. 20 and 21

where it was shown that graph state formalism22 can act as a framework for unifying

some of the secret sharing protocols, albeit not for general threshold structures. The

idea of Refs. 20 and 21 was to encode the secret in some local actions of the dealer on

a vertex of a suitably chosen weighted graph state. Local measurements of the

players on different vertices of this graph, could then reveal the secret to authorized

subsets of players. In this way, it was shown that threshold schemes of the type

ðn;nÞ; ð2; 3Þ and ð3; 5Þ can be implemented in a unified way for various forms of

channels interconnecting the dealer and the players. Therefore the works of Refs. 20

and 21 belong to the same class as in Ref. 1, in which entanglement is fully consumed

due to measurements of the players.

It is to be noted that while the idea of a fixed quantum carrier has an appeal for

communication, a price should be paid for its implementation: It requires a larger

number of particles to be entangled at the beginning and end of the protocol, but at

the end of each round a fixed amount of entanglement remains in the form of a

carrier. Nevertheless, it is worth to develop such a concept from theoretical side and

hope that it will someday become close to reality.

We remark that although we present our analysis for secure communication of

basis states or classical information, the idea also works for sending arbitrary

quantum states. In the simplest protocol discussed in the beginning of the paper we

explicitly show this, although we will not repeat it for other general schemes.

The structure of this paper is as follows. In Sec. 2 we put forward the basic

requirements that a quantum carrier should satisfy, in Sec. 3 we explain the basic

method in the simplest possible setting, that is quantum key distribution between

two parties. Then in Sec. 4 we briefly explain the use of quantum carrier for the

simplest secret sharing scheme, where one dealer wants to share a secret between
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two different players who have equal right for retrieving the message collaboratively.

For this reason, this is called a ð2; 2Þ secret sharing scheme. This is then generalized

to the ðn;nÞ scheme where a secret is to be shared between n players and all the n

players can retrieve the message collaboratively. Finally in Sec. 6 we define the

carrier for the ðk;nÞ threshold scheme where any of the k players can retrieve the

secret, although collaboration of all of the players is needed for the continuous

running and security of the protocol. We end the paper with conclusion and outlook.

2. General Considerations on the Quantum Carrier

Suppose that a quantum carrier has been set up for a specific communication task,

i.e. for a quantum key distribution between Alice and Bob or a secret sharing

scheme, between Alice as the dealer and Bob and Charlie as the players. This

quantum carrier should have the following properties:

(i) There should be simple and local uploading and downloading operators, so that

the legitimate parties can upload and download messages to or from this carrier.

(ii) While in transit, the messages should be hidden from third parties so that no

intercept-resend strategy can reveal the identity of the message.

(iii) Eve should not be able to entangle herself to the quantum carrier without being

detected by the legitimate parties. This property is to prevent Eve from con-

ducting more complex attacks.

Once such criteria are met, we say that a secure quantum carrier has been set up

for this communication task. In the rest of this paper we present quantum carriers

for various communication tasks. We should stress again that these requirements are

purely from the theoretical point of view, the main difficulty will obviously be to

maintain the carrier for a long enough time so that it can be used for passing many

quantum states before the entanglement decays and becomes useless.

3. Quantum Carrier for Key Distribution

The first task that we discuss is the simple communication between two parties,

where Alice wants to send a sequence of bits 0 and 1, a classical message, to Bob.17

Alice encodes the classical bits 0 and 1 into states j0i and j1i (the eigenbases of the Z
operator). The quantum carrier is

j�ia;b :¼
1ffiffiffi
2

p ðj0; 0i þ j1; 1iÞa;b; ð1Þ

where a and b refer to the Hilbert spaces of Alice and Bob, respectively. The Hilbert

space of the message is denoted by a number 1 (since one qubit is being transmitted).

The uploading operator, used by Alice, is a CNOT operator which we denote byCa;1,

Ca;1ji; jia;1 ¼ ji; iþ jia;1: ð2Þ
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The downloading operator is Cb;1, i.e. with control port by Bob and target port the

message.

Consider now a classical bit s which is encoded to the quantum state jsi and is to

be transferred from Alice to Bob. Alice performs the local operation Ca;1 on the state

j�ia;bjsi1, turning this state into

j�sia;b;1 ¼
1ffiffiffi
2

p ðj0; 0; si þ j1; 1; s 0iÞa;b;1; ð3Þ

where s 0 :¼ sþ 1 mod 2. While in transit the message is in the state

� s
1 ¼

1

2
ðjsihsj þ js 0ihs 0jÞ ¼ 1

2
I; ð4Þ

and hence inaccessible to Eve. At the destination, Bob can download the message

from the carrier by his local operation Cb;1, which disentangles the message and

leaves the carrier in its original form, ready for use in the next round. The fact that

Bob downloads exactly the same state which has been uploaded by Alice is due to

the perfect correlation of the states of Alice and Bob in the carrier. Alice can also use

this carrier for sending quantum states to Bob. Linearity of the uploading and

downloading operations allows Alice and Bob to entangle and disentangle a quan-

tum state j�i ¼ aj0i þ bj1i to and from the carrier.

To conduct a somewhat complex attacks on the communication, Eve can

entangle herself to the carrier and try to intercept-resend the message. To do this the

only possibility for her entanglement is

j� 0ia;b;e ¼ j0; 0ij�0i þ j1; 1ij�1i; ð5Þ

where j�0i and j�1i are two un-normalized states of Eve’s ancilla. Any other form of

entanglement, i.e. one in which a term like j0; 1ij�i is also present in the above

expansion, will destroy the perfect correlation between the sequence of bits trans-

mitted between Alice and Bob. In case that the two parties are using the carrier for

sending classical bits, Alice and Bob can publicly compare a subsequence of bits to

detect the presence of Eve’s entanglement. In case that they are using the carrier for

sending quantum states, Alice can insert a random subsequence of basis states into

the main stream of states and ask Bob to publicly announce his results of

measurements of these specific states. This strategy also works in other more

complicated schemes presented later, namely the ðn;nÞ and the ðk;nÞ schemes.

In order to prevent this type of entanglement, we now use a property of the

carrier (1) which turns out to be important in all the other forms of quantum carriers

that we will introduce later on. This is the invariance property of the carrier (1)

under Hadamard operations, that is

ðH �HÞj�i ¼ j�i: ð6Þ
At the end of each round, when the message is downloaded and the carrier is

clean, both Alice and Bob act on their share of the carrier by Hadamard operations.
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In the absence of Eve, the carrier will remain the same, however in presence of Eve,

(who supposedly acts on her ancilla by a unitary U) the contaminated (entangled

with the ancialla of Eve) carrier (1) will turn out to be

ðH �H � UÞj� 0ia;b;e ¼ jþ;þij�0i þ j�;�ij�1i

¼ 1

2
ðj0; 0i þ j1; 1iÞðj�0i þ j�1iÞ

þ 1

2
ðj0; 1i þ j1; 0iÞðj�0i � j�1iÞ; ð7Þ

where j�0i ¼ U j�0i and j�1i ¼ U j�1i. The second term in the carrier will certainly

introduce anti-correlations into the basis states communicated between Alice and

Bob, unless j�0i ¼ j�1i and hence j�0i ¼ j�1i which means that Eve cannot entangle

herself to the carrier.

4. Quantum Carrier for (2,2) Secret Sharing

In this scheme, Alice wants to share a secret with Bob and Charlie so that they can

retrieve the message only by their collaboration. The first quantum protocol for this

scheme was designed in Ref. 1 where it was shown that measurements of a GHZ state

in random bases by the three parties can enable them to share a random secret key.

The secure carrier for this protocol was first developed in Refs. 9�11. Its charac-

teristic feature is that two types of carriers, should be used which are turned into

each other by the Hadamard operations. The two carriers are

j�oddi ¼
1ffiffiffi
2

p ðj000i þ j111iÞ; ð8Þ

used in the odd rounds 1; 3; 5; . . . and

j�eveni :¼
1

2
ðj000i þ j011i þ j101i þ j110iÞ; ð9Þ

used in the even rounds, 2; 4; 6; . . . : The two types of carriers are turned into each

other by the local Hadamard action of the players at the end of each round,

H�3j�oddi ¼ j�eveni; H�3j�eveni ¼ j�oddi: ð10Þ
This property is crucial in checking the security of the protocol and detection of Eve

who may entangle herself with the carrier and intercept the secret bits.

In the odd and even rounds, the secret bit s is encoded differently as

jsoddi :¼ js; si;

jeveni ¼
1ffiffiffi
2

p ðjs; 0i þ js 0; 1iÞ ¼ 1ffiffiffi
2

p ðjþ;þi þ ð�1Þsj�;�iÞ;
ð11Þ

where s 0 ¼ sþ 1 mod 2. While in the odd rounds, the receivers each receive a copy

of the sent bit, in the even rounds they need each other’s collaboration for its
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retrieval. Therefore Alice can use the odd rounds to put random stray bits and put

the message bits in the even rounds.

In our opinion this property of the protocol, that is, a rate of one-half in send-

ing message bits is analogous to discarding one-half of the measured bits in

measurement-based protocols. However the bonus here is that Alice can send

pre-determined non-random messages.

Note that in both even and odd rounds the carrier can be written as

j�ia;b;c :¼
1ffiffiffi
2

p
X
q¼0

jqiajqib;c; ð12Þ

where we have dropped the subscripts even and odd to stress the uniformity. The

running of the protocol, i.e. the uploading and downloading operations, are based on

the following readily verifiable identities which we state for odd and even rounds

separately without writing the subscripts \odd" and \even" explicitly:

For odd rounds:

Ca;1Ca;2jqiajsi1;2 ¼ jqiajqþsi1;2;
Cb;1Cc;2jqib;cjsi1;2 ¼ jqib;cjqþsi1;2:

ð13Þ

For even rounds:

Ca;1jqiajsi1;2 ¼ jqiajqþsi1;2;
Cb;1Cc;2jqib;cjsi1;2 ¼ jqib;cjqþsi1;2:

ð14Þ

Equations (12)�(14) show how the encoded secret can be downloaded by Alice

and downloaded by Bob and Charlie in different rounds. In the odd rounds, the

uploading operator is simply Ca;1Ca;2, and in the even rounds it is Ca;1. In both types

of rounds the downloading operator is Cb;1Cc;2. These string of operators, that is,

uploading, carrying and downloading is depicted as follows:

j�ia;b;cjsi1;2 ! upload ! 1ffiffiffi
2

p
X1
q¼0

jq; q; qþsia;b;c;1;2 ! download ! j�ia;b;cjs1;2i:
ð15Þ

The above equation shows that any state j�i ¼Ps �sjsi can be encoded as j�i ¼P
s �sjsi and transferred by the same operations. So this protocol can also be used

for quantum state sharing in a secure way. The problems of security of the carriers

and the impossibility of Eve’s entanglement with them, has been analyzed in detail

in Refs. 9�11. The main points are that (i) the secret state is transferred from

Alice to Bob and Charlie in a mixed state and hence carries no information to

outsiders and (ii) the carriers in even and odd rounds are turned into each other by

local Hadamard actions of Alice, Bob and Charlie, a property which is possible only

in the absence of any entanglement with Eve. Any entanglement will have a

detectable trace on a substring of transferred states, which will be used to detect the

presence of Eve.9�11
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5. Quantum Carrier for (n,n) Secret and State Sharing

The previous protocol can be generalized to the ðn;nÞ scheme, where all the n

players should retrieve the secret collaboratively. In this case the encoding of a bit s

to quantum states for odd and even rounds is

jsoddi ¼ jsi�n ¼ js; s; . . . ; si;

jseveni ¼ 1ffiffiffi
2

p ðjþ;þ; � � � þi þ ð�1Þsj�;�; � � � �iÞ:
ð16Þ

Therefore j0eveni is an even parity state, and j1eveni is an odd parity state.

Then the protocol runs as in the ð2; 2Þ case with the obvious generalization of the

carrier and the uploading and downloading operators. In fact in both types of rounds

the carrier can be written as

j�i ¼ 1ffiffiffi
2

p
X
q2Z2

jq; qi; ð17Þ

where jqi stands for the encoding in (16) and we have suppressed the subscripts

\even" and \odd" for simplicity. The uploading operator will be CA :¼ Ca;1 Ca;2 � � �
Ca;n for the odd rounds and CA :¼ Ca;1 for the even rounds. The downloading

operator will be the same for both rounds and will be CB :¼ Cb1;1Cb2;2 � � �Cbn;n.

To show that the protocol runs in exactly the same way as in the (2, 2) scheme,

we need to prove the basic properties of the encoded states and the carrier. To this

end, we first note from (16) that the following relations hold,

H�njsoddi ¼
1ffiffiffi
2

p
X1
x¼0

ð�1Þsxjxeveni; H�njseveni ¼
1ffiffiffi
2

p
X1
x¼0

ð�1Þsxjxoddi: ð18Þ

From these two relations one easily shows that the carriers in the even and odd

rounds are turned into each other by the local Hadamard actions of players. Second

we need the generalization of the properties (13) and (14) to the ðn;nÞ case. To this

end we start from the simple properties

Ca;1jqiaj þi1 ¼ jqiaj þi1; Ca;1jqiaj �i1 ¼ ð�1Þqjqiaj �i1; ð19Þ
to obtain

Ca;1jqiajseveni1;...;n ¼ 1ffiffiffi
2

p ðCa;1jqiaðjþ;þ; � � � þi þ ð�1Þsj�;�; � � � �iÞ1;...;nÞ

¼ 1ffiffiffi
2

p ðjqiaðjþ;þ; � � � þi þ ð�1Þsþqj�;�; � � � �iÞ1;...;nÞ

¼ jqiaj ðqþsÞeveni1;...;n: ð20Þ
The only other non-trivial relation which we should prove is the following relation

for the even rounds which is necessary for the downloading operation, (for the odd
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rounds, the involved states are product states and the relation is obvious):

Cb1;1Cb2;2 � � �Cbn;njqijsi: ð21Þ
To show the validity of this relation we first use the following simple property of

CNOT operation, where the first bit is the control and the second bit is the target

qubits:

Cjþ;þi ¼ jþ;þi; Cjþ;�i ¼ j�;�i;
Cj�;þi ¼ j�;þi; Cj�;�i ¼ jþ;�i:

ð22Þ

Second we use these properties and (16) and the abbreviation CB :¼ Cb1;1Cb2;2 � � �
Cbn;n to obtain

CBjqijsi ¼
1

2
CBðjþ i�n þ ð�1Þqj � i�nÞðjþ i�n þ ð�1Þsj�i�nÞ

¼ 1

2
ðjþi�njþi�n þ ð�1Þqj�i�njþi�n

þð�1Þsj�i�nj�i�n þ ð�1Þqþsjþi�nj�i�nÞ

¼ 1

2
ðjþi�n þ ð�1Þqj�i�nÞðjþi�n þ ð�1Þqþsj�i�nÞ ¼ jqijqþs: ð23Þ

This completes the description and validity of the uploading and downloading

procedures for the ðn;nÞ scheme.

In passing we note that the form of the carrier (17) for this ðn;nÞ secret sharing
scheme is the same as in the simplest cryptographic protocol, (1). We will see in the

next section that the appropriate carrier for the threshold scheme ðk;nÞ where n is

an odd prime, is of the same form. We will explain the reason for this general

structure in the last section, however before that, we explain in detail the carrier for

the ðk;nÞ secret sharing scheme.

6. Quantum Carrier for (k,n) Threshold Secret Sharing

There are situations where there are n players and any subset of k or more members

can retrieve the secret, while subsets of smaller size cannot. This is called a ðk;nÞ
threshold structure23,24 in which all the players have equal weight. One can also

imagine situations where different players have different weights. This leads to a

general access structure, according to which the players form a set R of say n

members and an access structure is a collection A of subsets of R. The subsets in A
(and their unions) are called authorized subsets and the members of each authorized

subset should be able to retrieve the key by their collaboration, while the subsets

which are not in A, called adversaries, cannot retrieve the secret. It is known that

once a threshold scheme is solved, then other more general access structures will be

possible.25,26 For example ifR ¼ fa; b; cg and A ¼ ffa; bg; fa; cgg, then we can run a

ð3; 4Þ threshold scheme giving 2 shares to a and one share to b and c each.
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The ðk;nÞ threshold scheme was first generalized to the quantum domain in

Ref. 18, where quantum states could also be shared between n parties so that any k

of the players could retrieve the quantum state collaboratively. To be in conformity

with the no-cloning theorem, n had to be smaller than 2k. We will deal in detail with

the case where n ¼ 2k� 1 is a prime number. Other cases where n < 2k� 1 are

obtained by a simple modification of the ðk; 2k� 1Þ scheme. For example a scheme

like ðk; 2k�mÞ is implemented by running the scheme ðk; 2k� 1Þ as usual, but with
Alice playing the role of the other m� 1 receivers in addition to her usual role. The

idea of Ref. 18 was to adapt the polynomial code, first developed in Ref. 27, to the

quantum domain. Note that in Ref. 18, quantum mechanics was exploited only for

message splitting and not for message distribution. Later it was shown in Refs. 20

and 21 that graph states can be used for combining the two parts of the problem in

one scheme, for some threshold schemes, namely for ð2; 3Þ, ð3; 5Þ and ðn;nÞ schemes.

Here we show that the idea of quantum carrier can be used to provide a method of

secure distribution for all secrets of the ðk;nÞ types provided in Ref. 18. Let us first

see what a polynomial code is.

6.1. The polynomial code

Consider a symbol s. Classically if we want to share this symbol as a secret between

n parties, called B1, B2; . . . ;Bn, so that any k members of the parties can retrieve

this symbol and fewer than k members cannot, we can define a real polynomial of

degree k� 1 in the form

Pc;sðxÞ :¼ c0 þ c1 xþ c2 x2 þ � � � þ ck�2x
k�2 þ s xk�1 ð24Þ

and evaluate this polynomial on n distinct points x0; . . . ;xn�2, and xn�1. We can

then give the member Bi of the set, the value Pc;sðxiÞ. It is a simple fact that a

polynomial of degree k� 1 is completely determined by its values on k distinct

points. So any kmembers can compare their values and determine the full functional

form of the polynomial and hence the real number s. To make the process simple and

less prone to errors, we can substitute the real number field with the field Zn :¼
f0; 1; 2; . . . ;n� 1g (where n is prime). For the n points in Zn we can take simply

xi ¼ i. Hence we can encode the symbol s into a product state jsi :¼ jPc;sð0ÞiB1
�

jPc;sð1ÞiB2
� � � � jPc;sðn� 1Þi

Bn
. Let us now sum such a product state over all possible

c 2 Zk�1
n , and obtain the code

s ! jsi :¼ 1ffiffiffiffiffiffiffiffiffiffi
nk�1

p
X

c2Z k�1
n

jPc;sð0ÞiB1
� jPc;sð1ÞiB2

� � � � jPc;sðn� 1Þi
Bn

� 1ffiffiffiffiffiffiffiffiffiffi
nk�1

p
X

c2Z k�1
n

jPc;sð0Þ;Pc;sð1Þ; . . . ;Pc;sðn� 1Þi: ð25Þ

In order to see how to find a suitable carrier for this code, and indeed in order to

show that the carrier for this code falls within the same class of carriers considered so
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far, we have to prove further algebraic properties of this code. To do this, we cast it

in the form of a Calderbank�Shor�Steane (CSS) code.28,29

6.2. The CSS structure of the polynomial code

Let n be a prime number. With addition and multiplication modulo n, the set

Zn :¼ f0; 1; 2; . . . ;n� 1g will be a field. For any n, Zn
n is a vector space over Zn, i.e.

Zn
n is the set of all n-tuples ðv1; v2; . . . ; vnÞ where vi 2 Zn. Let C be a linear code, i.e.

a subspace of Zn
n , spanned by linearly independent vectors fe0; e1; . . . ; ek�2g. Thus

C is isomorphic to Zk�1
n . Consider the case where the dual code of C, i.e. the code

space spanned by all the vectors which are perpendicular to C, contains C and has

one more dimension. Let C? be spanned by the vectors fe0; e1; . . . ; ek�2g [ fek�1g.
Thus we have

C ¼ Spanfe0; e1; . . . ; ek�2g;
C? ¼ Spanfe0; e1; . . . ; ek�2; ek�1g:

ð26Þ

In the codes that we will introduce, the special vector e :¼ ek�1 is normalized so that

e � e ¼ �1: We therefore have

ei � ej ¼ 0; 1 � i; j � k� 2;

e � ej ¼ 0; 0 � j � k� 2;

e � e ¼ �1:

ð27Þ

We will now define the following special Chalderbank�Steane�Shor (CSS)

code, 19,28�31 whose codewords correspond to the classes of the quotient space C?=C:

jsi :¼ 1ffiffiffiffiffiffiffiffiffiffi
nk�1

p
X
c2C

jcþ sei: ð28Þ

Thus one dit s is coded into then-qudit state jsiwhich is to be distributed between the
n receivers, each component of the vector being given to one participant.

In the appendix, we will show the vectors el with components

ðelÞj ¼ jl; j ¼ 0; 1; . . . ;n� 1; l ¼ 0; 1; . . . ; k� 1 ð29Þ
satisfy all the properties listed in (27). Explicitly we have

e0 ¼ ð1; 1; 1; . . . ; 1Þ;
el�1 ¼ ð0; 1; 2 l; . . . ; ðn� 1Þ lÞ:

ð30Þ

It is now very simple to see that the CSS code thus constructed is nothing but the

polynomial code in (25). To see this we note that the vector c 2 C has the following

expansion

c ¼
Xk�2

l¼0

clel ð31Þ
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and hence the components will be

ðcþ seÞj ¼
Xk�2

l¼0

clðelÞj
 !

þ sðek�1Þj ¼
Xk�2

l¼0

clj
l

 !
þ sjk�1 ¼ Pc;sðjÞ: ð32Þ

Therefore giving each component to one player, the code will be

jsib1;b2;...;bn :¼
1ffiffiffiffiffiffiffiffiffiffi
nk�1

p
X

c2Z k�1
n

jPc;sð0Þ;Pc;sð1Þ; . . . ;Pc;sðn� 1Þi; ð33Þ

which is exactly the polynomial code (24). Now that the CSS structure of the

polynomial code is revealed, many of its properties can be proved in a simple way. In

particular we need the following property which plays an important role in the

security of the carrier.

Lemma. The set of all ðk;nÞ codes (33), is invariant under the joint multi-local

Hadamard operation, i.e.

H�njsi ¼ 1ffiffiffi
n

p
Xn�1

x¼0

!�sxjxi; ð34Þ

where ! is a root of unity, !n ¼ 1.

Proof. We use a well-known property of the CSS codes according to which,

H�njwi ¼ 1

jC1=C2j
X
v

!w�vjvi; ð35Þ

where jC1=C2j is the number of cosets C1=C2. To adapt this general relation to our

case, we note that in our case jC 1j ¼ jC?j ¼ nk, jC 2j ¼ jCj ¼ nk�1, and hence

jC 1=C 2j ¼ n. Moreover we make the following substitutions,

jwi ! jcþ sei ¼ jsi; jvi ! jcþ xei ¼ jxi; ð36Þ
and note that

ðwÞ � ðvÞ ¼ ðcþ seÞ � ðcþ xeÞ ¼ �sx: ð37Þ
Putting all this together proves the lemma.

6.3. The carrier and the uploading and downloading operators

The quantum carrier is constructed as follows:

j�i
a;b1 ;...;bn

¼ 1ffiffiffi
n

p
X
q2Zn

jqi
a
jqi

b1 ;...;bn
: ð38Þ

The important property of this carrier is that it is invariant under the joint action of

Hadamard operators, performed by Alice and all the other players. Using (34)
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proves this assertion:

H�nþ1j�i ¼ 1

n

X
x;y;s

!sx�syjx; yi ¼ 1ffiffiffi
n

p
X
x

jx;xi ¼ j�i: ð39Þ

In order to see how Alice uploads secrets onto the carrier and how the players

download the secret from the carrier we need some algebraic properties of the code.

Definition. For any vector v ¼ ðv1; v2; . . . ; vnÞ 2 Zn
n define the following string of

CNOT operators performed by Alice:

CAðvÞ :¼ Cv1
a;1C

v2
a;2 � � �Cvn

a;n: ð40Þ
Also define the following multi-local operator for Bob’s:

CB :¼ Cb1;1Cb2;2 � � �Cbn;n: ð41Þ

Theorem. The operator CA :¼ CAðeÞ, for e as in (30), uploads the message into the

carrier by Alice and the operator C�1
B downloads the message from the carrier by

Bob’s, leaving the carrier in its original form.

Proof. We fist show that for any state jqia and any message jsi1;2;...;n
CAjqijsi ¼ jqijsþqi: ð42Þ

This is seen by expansion of jsi in components and noting that

CAjqijsi ¼
1ffiffiffiffiffiffiffiffiffiffi
nk�1

p CAjqi
X

c2Zk�1
n

jðcþ seÞ1; ðcþ seÞ2; . . . ; ðcþ seÞni

¼ 1ffiffiffiffiffiffiffiffiffiffi
nk�1

p jqi
X

c2Zk�1
n

jðcþ ðsþ qÞeÞ1; ðcþ ðsþ qÞeÞ2; . . . ; ðcþ ðsþ qÞeÞni

¼ jqijsþqi: ð43Þ

From (43), we see that

CAj�ijsi ¼
1ffiffiffi
n

p
X
q2Zn

CAjq; qijsi ¼
1ffiffiffi
n

p
X
q

jq; qijqþsi: ð44Þ

Therefore Alice uploads (entangles) the message jsi to the carrier by the local

operation CA. For the other part, we need the following

CBjqijsi ¼ jqijsþqi: ð45Þ
To show this we note that

CBjqijsi ¼ CB
X
c;c 0

jcþ qeijc 0 þ sei

¼
X
c;c 0

jcþ qeijc 0 þ cþ ðsþ qÞei ¼ jqijsþqi: ð46Þ
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From this last equation we find that

C�1
B

X
q

jq; qijsþqi ¼
X
q

jq; qijsi; ð47Þ

which means that the players, can download the message from the carrier and put

the carrier back to its original form.

The basic steps of the quantum secret sharing are now clear. A carrier in the form

of the state j�i is shared between Alice and all the receivers, B1;B2; . . . ;Bn. Alice

operates by his CA operator on her part of the carrier and the code state jsi and thus

entangles the code state to the carrier j�i. At the destination the players act on the

carrier and the code space by C�1
B and download the state jsi. From this code state,

no less than k players can retrieve the secret symbol s. The carrier is now ready for

transferring the next code state.

7. The Security of the Quantum Carrier

In this section we discuss the security of state transmission via the carrier and

analyze two types of attacks performed by Eve. The security of the retrieval pro-

cedure of the symbol s from the encoded state jsi need not concern us and has been

discussed elsewhere.18 Obviously the analysis of security depends on the resources

available to Eve. We consider two types of attacks in the following two subsections.

This type of analysis applies to all the schemes mentioned up to now.

7.1. Simple intercept of message by Eve, without her

entanglement to the carrier

In this type of attack we assume that Eve is not entangled with the carrier, but she

has access to all the message qudits sent from Alice to the players. After uploading

the message, the full state is given by

j�si ¼
1ffiffiffi
n

p
X
q2Zn

jq; q; qþsi
A;B;1...;n

: ð48Þ

While in transit the data qudits are in the state

�D ¼ 1

n

X
s2Zn

jsihsj; ð49Þ

which is an equal mixture of all the encoded states. Therefore even if Eve has access

to all the data in transit and intercepts all the qudits sent to all the players, she

cannot acquire the secret s or the secret state, since she only finds and equal mixture

of all the encoded states.

At the destination, the receivers, act by the inverse local operator CB and

according to (47), disentangle the code from the carrier. They can then retrieve the

classical secret s by collaboration of each other according to the access structure.
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Once retrieved, we resort to the arguments of Ref. 18 to show that this encoded state

is secure against cheating of groups of unauthorized players.

Therefore in the simplest intercept attack, Eve does not acquire any information

about the secret symbol s. We now consider more general attacks.

7.2. Entanglement of Eve to the carrier and intercept-resend attack

We now assume that in addition to access to the message channel, Eve can entangle

herself to the carrier. Let us see if she can do appropriate action for intercepting

the encoded state jsi and not an equal mixture. Consider the first round where the

symbol s1 is encoded to js1i and sent by Alice. The state of the carrier and the

message after Alice uploading operation will be

j�ð1Þðs1Þia;B;M ¼ 1ffiffiffi
n

p
X
q

jq; qia;Bjqþs1iM ; ð50Þ

where a stands for Alice, B for all the players B1; . . . ;Bn and M for the n message

qudits, m1;m2; . . . ;mn. Eve can now set her n ancilla qudits E :¼ ðe1; e2; . . . ; enÞ to
j0iE, and then do the following operations: acts by CM ;E :¼ Cm1;e1Cm2;e2 � � �Cmn;en

which transforms the state j�ð1Þðs1Þia;B;M j0iE to

j�ð2Þðs1Þia;B;M;E ¼ 1ffiffiffi
n

p
X
q

jq; qia;Bjqþs1iM jqþs1iE: ð51Þ

When Alice and the players execute the first round of the protocol to the end and the

players extract the state js1i, Eve acquires nothing from the symbol s1, however she

has achieved in entangling herself with the carrier in the form

j� 0ia;B;E ¼ 1ffiffiffi
n

p
X
q

jq; qia;Bjqþs1iE: ð52Þ

In the second round, when the symbol s2 is being sent and the full state is of the form

j� 0ðs2Þia;B;E;M ¼ 1ffiffiffi
n

p
X
q

jq; qia;Bjqþs2iM jqþs1iE; ð53Þ

Eve performs the following sequence of operations: (i) acts by C�1
M;E to produce the

state

j� 0ð1Þðs2Þia;B;E;M ¼ 1ffiffiffi
n

p
X
q

jq; qia;Bjqþs2iM js1 �s2iE; ð54Þ

(ii) measures the ancillas to acquire s1 � s2, and (iii) acts by CM;E to put back the full

state in the form (53). When Alice and the players finish the second round, they

acquire the symbol s2, but Eve also acquires the symbol s1 � s2, while she is still

entangled with the carrier in the form (52) and is ready to do the same attack for the

next round. In this way she is able to retrieve the sequence of symbols

s1 � s2; s1 � s3; s1 � s4; . . . : ð55Þ
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This sequence enables her to find the whole message by checking n different choices

for the original symbol s1. This shows that if there is a possibility for Eve’s entan-

glement with the carrier, she is able to successfully intercept all the data.

In order to prevent this, Alice and the players act on their respective qudits of the

carrier, by Hadamard operations. As we have seen above, this operation leaves the

pure form of the carrier invariant. Let us see if this operation is able to detect an

entanglement of Eve, i.e. a contamination of the carrier. It is clear that if the carrier

contains terms which are not of the form jq; qia;B, then there will be mismatches

between what Alice uploads and what the players download. This mismatch can

easily be detected by public announcements of some stray bits which are deliberately

inserted into the stream of the symbols. In order to escape this detection, the only

admissible form of Eve’s entanglement with the carrier is

j� 0i ¼
X
q

jq; qi � j�qi; ð56Þ

where �q are a collection of un-normalized states of Eve. The method of detection in

this case is the same as in the simple ð2; 2Þ case, discussed after Eq. (7). Also in view

of the discussion in Sec. 7.3, only the legitimate parties or even a subset of them are

required to publicly announce the results of their measurements.

In order to prevent this type of apparently undetectable entanglement, we note

that the pure carrier is invariant under the action of Hadamard operators, while this

contaminated carrier is not. In order to retain the correlations, Eve may operate on

her ancilla by a suitable operator U to change the above state into

ðH �H�n � UÞj� 0i ¼ 1

n

X
q;x;y

!qðx�yÞjx; yi � U j�qi: ð57Þ

In order to retain the original form of correlations between Alice and the players in

the carrier, the operator U must satisfy the following property

U
X
q

!qðx�yÞj�qi ¼ nj�xi�x;y 8 q; ð58Þ

for some states j�xi. Putting x ¼ y one finds that j�xi is independent of x and hence a

rearrangement shows that X
q

!qðx�yÞðU j�qi � j�iÞ ¼ 0: ð59Þ

Acting on the left hand side by the inverse Hadamard operation, one finds that

Uðj�qi � j�iÞ ¼ 0, which means that all the states �q are equal to each other and

hence the state j� 0i cannot be an entangled state. Therefore Eve cannot entangle

herself to the carrier without being detected.

Note that we have assumed that Eve is an external agent and all the players have

run the protocol as they should, i.e. have performed their Hadamard operation on
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the carrier at the end of each round. In principle one can assume that a subgroup of

players collaborate with Eve, i.e. perform other operations than Hadamard in order

to ease undetectable entanglement of Eve with the carrier. For example consider a

ð2; 3Þ scheme with playersB1,B2 andB3. The question is whether one of the players,

say B1 is capable to collaborate with Eve to retrieve the secret symbol s? To be

honest, we have not been able to either devise a successful attack of this type or a

method for its prevention.

7.3. The role of players collaborations

It is part of the protocol that all the players should perform their CNOT’s on the

state j�si in order to download the state jsi, but once this state is downloaded, then
no less than k players can collaborate to retrieve the symbol s as proved in Ref. 18.

One may then argue that this is not a genuine ðk;nÞ threshold scheme, since for

downloading the state jsi from the carrier, all the players should collaborate.

The important point is that the CNOT operation of all the players are needed

only for cleaning of the carrier from remnants of messages, and in fact any k players

can retrieve the symbol s from the state that they download from the carrier, but the

running of the protocol for other rounds needs collaboration of all the players.

This assertion can be proved as follows: Let K be any set of k members who want

to retrieve the message. Denote by CK the joint CNOT operations of the k players

belonging to the set K, i.e.

CK :¼ �
j2K

CBj;j: ð60Þ

Denote also by CN�K the joint CNOT operations of the rest of N � k players. Also

denote by MK, the local operation and classical communications that the k players

perform among themselves to recover the symbol s from jsi. We have shown that the

sequence of operations MKCKCN�K when acting on the state j�si in (48) produces

the symbol s unambiguously and leaves the carrier clean of the remnants of the

message, i.e. disentangle the state jsi from the carrier. It is important to note that

due to their local nature the two operations MK and CN�K commute, so that we

have the identity

MKCKCN�K ¼ CN�KMKCK ¼ CN�K MKCKð Þ: ð61Þ
However if the operation on the left hand side of this relation leaves the k players in

the set K with an unambiguous symbol s, we can conclude that the operations

ðMKCKÞ does the same thing, because the remaining operation CN�K, by its local

nature, has no effect on the qudits retrieved by the set K. The sole effect of CN�K is

to disentangle completely the carrier from the message state and make it ready for

the next round. Such collaboration is of course necessary for the continuous running

of the protocol like any other communication task. Let us now study a simple

example, in which we will also see in explicit terms the above argument.
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8. Example: The (2, 3) Threshold Scheme

The simplest threshold scheme is the scheme ð2; 3Þ for which
Pc;sðxÞ ¼ c0 þ sx ð62Þ

and hence

s ! 1ffiffiffi
3

p
X
c0

jc0; c0 þ s; c0 þ 2s; i

¼ ðI �X �X 2Þs 1ffiffiffi
3

p
X
c0

jc0; c0; c0i ð63Þ

or more explicitly as

0 ! j�0i ¼ 1ffiffiffi
3

p ðj000i þ j111i þ j222iÞ;

1 ! j�1i ¼ 1ffiffiffi
3

p ðj012i þ j120i þ j201iÞ; ð64Þ

2 ! j�2i ¼ 1ffiffiffi
3

p ðj021i þ j102i þ j210iÞ:

Note that for qudits, the operators X and Z (to be used later) are defined as Xjii ¼
jiþ 1; mod di and Zjii ¼ ! ijii, where !d ¼ 1. Equation (63) shows what kind of

encoding circuit Alice has to use to encode a state
P

s asjsi to
P

s asjsi. The

encoding circuit is shown in Fig. 1. Moreover it is easily seen from (64) that the

operator Z defined as

Z :¼ ðI � Z � Z 2Þ ð65Þ
acts as follows on the code states

Z jsi ¼ !�sjsi: ð66Þ
These encoded states have the nice properties that

Z�1
1 � Z2ji ¼ !sji;

Z�1
2 � Z3ji ¼ !sji; ð67Þ

Z�1
3 � Z1ji ¼ !sji;

H0

0

0

Fig. 1. (Color online.) The encoding circuit used by Alice, for generating the (2, 3) code jsi from s.

Secure Quantum Carriers for Quantum State Sharing

1250018-17



which shows clearly that any two of the receivers can retrieve the classical secret s

by local measurements of the encoded state. The uploading and downloading

operators for this scheme are shown in Fig. 2.

Let us now see explicitly in this example, an instance of the general discussion

after Eq. (59). In other words, we want to show that although the CNOT action of

all three receivers is necessary for disentangling the state jsi from the carrier, it does

not mean that full collaboration of the participants is necessary for recovering the

message s. That is let us show that even without the collaboration of B3, B1 and B2

can indeed disentangle and retrieve the message from the carrier. The collaboration

of B3 is only needed to clean the carrier from the message.

Assume that only two of the participants, say B1 and B2 enact their CNOT’s on

the state j�si. The resulting state will be

C�1
B1
C�1
B2
j�si ¼

1ffiffiffi
3

p
X
j;k

jii
A
jj; jþ i; jþ 2ii

B1B2B3
jk; kþ s; kþ jþ 2ðiþ sÞi123:

Thus measurements of qudits 1 and 2 by these two participants reveals the secret s,

without any need for collaboration of B3.

On the other hand suppose that the player B3 wants to retrieve the message

symbols on his own. To this end he adds to the quantum carrier j�i
A;B1 ;B2 ;B3

an extra

qudit, in the state j�0iB 0
3

and at the end of each round, when all the parties are

supposed to act on the carrier by Hadamard operators, B3 acts by a suitable bi-local

operator on his two qudits, so that in conjunction with the Hadamard operators of

A, B1 and B2, the quantum carrier transforms to

j� 0i ¼
X
i;j

ji; jþ i; jþ 2i; ji
A;B1 ;B2 ;B3

j�jiB 0
3

: ð68Þ

This is the only operation he can do in order not to destroy the correlations

between stray qudits which is checked randomly by Alice and the participants.

Now when the other participants proceed as usual for entangling a code state jsi
to and from the quantum carrier, B3 wants to proceed in a different way to reveal

the symbol s on his own. The state of the quantum carrier and the code state jsi,
which at the beginning of a round is j� 0ijsi, after Alice CNOT operations will

A B1 B2 B3
Φ Φ

ρs

Fig. 2. (Color online.) The schematic form of the carrier (thick line) and the uploading (by A) and

downloading (by B1;B2 and B3) for a simple ð2; 3Þ threshold scheme.
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develop as follows:

j� 0
si ¼

X
i;j

jii
A
jjþ i; jþ 2i; j; �jiB1 ;B2 ;B3 ;B

0
3

jiþsi1;2;3 ð69Þ

where we use the subscripts 1; 2; 3 to denote the qudits which are respectively sent to

B1;B2 and B3.

It is now easily verified that the density matrix of the qudits B3;B
0
3; 1; 2 and 3 is

given by

�
B3 ;B

0
3
;1;2;3

¼
X
j

jjihjj
B3

� j�jih�j jB 0
3

�
X
i

jiþsihiþsj; ð70Þ

which is independent of s. Therefore even when one of the participants entangles a

qudit to the quantum carrier, refrains from cooperation with others in applying

Hadamard gates and/or inverse CNOT operations, he cannot obtain any infor-

mation about the secret symbol s.

The collaboration of all the participants, is only necessary for disentangling

completely the data from the carrier and making it ready for next use. This is

certainly a feature that any communication protocol should have.

9. Discussion

We have developed the concept of quantum carrier9�11,17 to encompass more com-

plex classical secret and quantum sharing schemes. We have described the procedure

of uploading and downloading messages to and from the carrier in increasingly

complex situations, i.e. for quantum key distributions, for ð2; 2Þ, ðn;nÞ and ðk;nÞ
threshold schemes. As described in the text, for each task a different quantum carrier

is required, although it seems that they all have similar forms (38). We have also

shown that simple intercept-resend attacks can destroy the pattern of entanglement

in the carrier which can be detected by legitimate parties. In the general ðk;nÞ secret
sharing scheme, although collaboration of all parties is required for the continuous

running of the protocol (i.e. cleaning of the carrier from the remnants of the trans-

mitted messages), any set of k players can download and retrieve the message.

We hope that together with the previous results, the concept of quantum carrier

can attract the attention of other researchers who will develop it into more complex

forms. An important question is whether there can be universal carriers between a

set of players, which can be used for various cryptographic tasks on demand of the

players, i.e. quantum key distribution between the sender and a particular receiver,

or secret sharing between the sender and a particular set of players. Another

interesting general question is whether there exist general carriers which can be used

to simultaneously send many messages to different receivers via a single quantum

carrier, in the same way that frequency modulation is used for such a goal in classical

communication. Finally the question of general proof of security of these types of

carrier-based protocols remain to be investigated.
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Appendix

In this appendix we want to prove that the vectors in (30) satisfy the properties (33).

That is if we define

ðelÞj ¼ jl; j ¼ 0; 1; . . . ;n� 1; l ¼ 0; 1; . . . ; k� 1; ðA:1Þ
then

ei � ej ¼ 0; 1 � i; j � k� 2;

e � ej ¼ 0; 0 � j � k� 2;

e � e ¼ �1:

ðA:2Þ

Let p be an odd prime and define

SkðpÞ :¼
Xp�1

j¼1

jk: ðA:3Þ

First we prove that,

SkðpÞ ¼ ��k;p�1; mod p: ðA:4Þ

Consider the following identity:

Xp�1

j¼1

½ðjþ 1Þm � jm� ¼ pm � 1 � �1: ðA:5Þ

Expand the first term by using the binomial theorem to find

Xp�1

j¼1

1þ
Xm�1

r¼1

m
r

� �
jr

" #
¼ �1: ðA:6Þ

Interchange the order of the two summations and use the definition (A.3) to obtain

Xm�2

r¼1

m
r

� �
SrðpÞ þmSm�1ðpÞ ¼ 0: ðA:7Þ
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This gives us a recursion relation in the form

Sm�1ðpÞ ¼
�1

m

Xm�2

r¼1

m
r

� �
SrðpÞ: ðA:8Þ

The recursion relation is valid for 2 < m < p. The lower bound is obvious from the

upper limit on the summation. The upper bound is due to the fact that for m ¼ p,

the denominator itself vanishes modulo p. Equation (A.8) leads for example to

S2ðpÞ ¼ � 1

3

3

1

� �
S1ðpÞ

� �
;

S3ðpÞ ¼ � 1

4

4

1

� �
S1ðpÞ þ

4

2

� �
S2ðpÞ

� �
;

S4ðpÞ ¼ � 1

5

5

1

� �
S1ðpÞ þ

5

2

� �
S2ðpÞ þ

5

3

� �
S3ðpÞ

� �
;

..

.

ðA:9Þ

Direct calculation gives S1ðpÞ ¼ 1þ 2þ 3þ � � � ðp� 1Þ ¼ pðp�1Þ
2 which is zero mod p,

since p� 1 is even. The recursion relations above then imply that SmðpÞ ¼ 0 for all

1 � m < p. The case m ¼ p should be calculated directly, using the Euler theorem

which states that for every prime number p, jp�1 ¼ 1mod p. The result is immedi-

ate, namely Sp�1ðpÞ ¼ �1:

Now using the relation (A.4) it is easy to verify that the vectors ei in (A.1) satisfy

the desired properties in (A.2).
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