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of simulating one Hamiltonian from anothier to specific algorithms for sirhily

particular physical quantity [8-20]. This work has sparked. intersst in the possi
of near future simulations on quantum Systems. T

In order to simuiate one quantum system with another one must ensuze
cally, one must

system must he properly init ; i i ons which: piim;
evolution of the simulated system must be applied; and, finally, a measure lenting
be performed to determine an observable which represents a quantity of inte
the simul al to

one only requires the Hamiltonian, or corresponding operations, or propagat
able to be simulated. Thus simulations may require lesser degrees of con
Guantum system, _ ‘

- In the following sections, some genera] objectives of quantum contro]
cussed and proposals for how these objectives might be achieved which appéar
Quanium computing literature are given (Section 2). In Section 3, these prin
are applied to the simulation of g pairing model Hamiltonian on an NMR ¢
computing device in Section 4. Such models are used to describe superc
ity. ‘Finally, in Section 4 some recent resuits in quantum contro) and som
experiments are discussed which are directly relevant to pairing model simiilati

. 2.. CONTROL OF QUANTUM SYSTEMS

Classical contro) theory benefits from the theory of differentinble manifold
- Lie group theory {See for example [21]). Given the use of these subjects in‘ys;
mechanics (e.g., Berry phases [22]), 1% is not surprising that much. of
theory for clagsical mechanical systems also i
A system which has its control
loop control) can be described quite well wi
that the measurement and subsequent feed closed-Ioo
of quantum information can be quite different. Both closed- and open-1o6p
techniques have now been extended to quantum systems in various ciicumst
In the interest of space and time no attempt will be. made to produce: a; th
citation list. For an Introduction, there is the book Butkovskii and 'Safn(__n.l.
For a textbook treatment of contye] of atomic and molecular processes, see [2
literature on quantum coritrol includes ‘the ‘work of Butkovskii and Sams
{and references therein), Belavkin [22], and Huang, et a. [26] (See also[2

that: on:of g am ntrol is givenIWhich_'éﬁpp]ies
_r:,\Fihirte-_'systems‘ of qubits (two—state systems) are used;:t
finite dimension are considered here. . : o
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Let us define a-control system according to the following. A state $(t) of a
rantum system evolves according to . , e
it = [Ho+ D w0, ()
Wl_'lei"e h=1, Hy, m = 0,1,..., M are constant Hermitian operators (Hamilionians)
and the um(t), m = 1,..., M are controllable parameters. There are many questions
control theory seeks to answer. For example given an initial state, can a particular
final state be reached? Since quantum computers will seek to answer unknown ques-
ions, a better staterient for those considerations is, given an initial state, what are
! the final states that can be reached? For simulations, one may ask, what are all
he particular Hamiltonians that can be generated from a given set?

‘The most obvious way in which one would consider quantum control for quantum
omputing is the usé of experimental controls to implement a universal gate set. This
is & set of gates which, when combined, can implement any unitary transformation
‘on a set of qubits. One universal gate set is the controlled not (CNOT) and the set
-of single qubit gates [28]. It was later shown, (a result from ciassical control theory
[21]), that almost any two two-qubit Hamiltonians will provide a universal gate sef
[29, 30].. This result concerns controllability. and, while useful, says nothing about
he ability of an experimenter to create a unitary transformation on an appropriate
time scale. The main obstacle to building a quantum cemputing device is noise in
the quantum systems.- Thus accuracy depends. on the time required to implement

transformations: w o e S s S
-+ To'produce a réliable quantum computing output, quantum error correcting
codes were déveloped: [31;32].. Quantum error correcting codes are also quantum
control $ceriarios where ani error is detected and corrected. This closed loop control
mimics the redundancy, or repetition codes from classical error correction. In this
case, the contfol parameters are associated with transformations on a set of logical,
or encoded qubits. - These provide transformations which implement any error-free
- unitary transformation on the set of logical qubits. These methods are often referred
to as active error corfection methods since they actively deteet and correct errors.
(For a review: of thése and other error prevention methods for gquantum computing
see [33].) . - ' ' . S 3
Decoherenice-free, or noiseless, subspaces [34-39] are often referred to as passive
error prevention codes:; Tn this case the information is again stored in logical qubits
which are designed to taks advantage of a system-bath interaction symmetry. If the
- logical qubits are choden properly; the information will evolve without being adversety
affected by the interaction with the bath. Since, after proper preparation, the system
can evolve-decohererice-Tree; or noiselessly, this is an open loop type of control..

'+ Dynamical decoupling operations [40, 41}, which are generalizations of average
Hamiltotiian theory' used in nuclear magnetic resonance (NMR), are used to suppress
errors.: In ain ideal limit of very: fast “bang-bang” type operations, they can eliminate
noisés in & quantium: systems’ evolution. Such operations:are also open-loop; using
- only a predetermined pulse set to eliminate noises. These controls are used to average

away Tioises by Tepeated application. of fast pulsinig cotitrols and have been shown to
:,:provi'de'-'ziofsei'_rédtict_ibnﬁ in'& variety of proposed ‘experimental situations. .. -z ..
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Fmally, since not-one of these methods has been completely effective a.t elimi
natmg noise, combinations have been used to provide control techniques which: 15
one or more of these techniques. These combinations may provide the most pr
ing avenues yet for the reduction and/or elimination of noises in order to ach
quantum computing {33].

3. SIMULATI“\IG A BCS TYPE MODE

A umversal quantum computmg device could serve as & umversal quantum foih
Tator. However, one need not have a working quantum computing device with
number of qubits in order to simulate some physical systems which are out, of:
of a classiesl device. In addition, some parts of a system which are not nece
controllable may have analogues in the system to be simulated. In fact, 1o
may we simulate closed quantum systems with a quantum simulator, it is pé'SSIbl' o)
simulate open quantum system with a quantum simulator thus some noises néed b
be prevented. S

The quantity simulated and its relation to the physical system may have gpecis
characteristics not inherent in the quantum simulation. Therefore care must be
when comparing the simulated system to the one simulated. For example; th
dynamical decoupling controls discussed in the previous section are dependen
the details of the system-bath interaction (see [33] for a review). This is g
which may not be able to be accurately simulated except in special cases: H
for testing physical models, quantum simulation shows great promise. -

-In this section we will discuss the simulation BCS-like Hamﬂtonlan and
generai pairing models. However, we will limit the discussion to this partic
interesting case of quantum simulation and discuss the initialization, simulation
readout of the simulating system. Before such details are presented, we wi
examine the salient features of the algorithm to simulate the BCS Hamﬂtoma
was first presented in [42] (see also [43]). '

Pairing Hamiltonians: are typically expressed in terms of fermionic ot b
creation (dnnihilation) operators; ¢l (cm) and bf (by,), respectively, whet
1,2,..., N denotes all relevant quanbum numbers For example, the BCS H
nian has the form :

G Hpes = Z 5 (’n +n }-i— Z n-;!CT t i,

m=1 m,i=1

where nf, = ChmCam 18 the- number Gperator, and the matrix elements

le = m|V|l —l
‘(We 1mpose no: restuctlon on in, [) are reaI and can be C&}culated e. g ;
ductors, in terms of the: Coulomb force-and the electron-phonon interact
Pairs: of fermions are labeled by the quantum numbers m and —m, accordin
: Cooper pair. smtuafmon where paired-electrons have equal energies but oppos
ménta and spms- m'= (p; 1) and i = (=p,|). These are degenerate; tin




ionic or b
1y, whier
e BCS Mz

‘provided nZ +n?,

- Where em =t -
" dnd ‘qubib indices. Further; in the BOS cage thé qubit state space
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siners whose energies are considered phenomericlogical parameters [46]. The same
55 i5-applicable to nuclei; where cffective pairings occur between nucleons in time-
eversed partners [44, 45 N is an effective state number, which equals the number
ibits in the algorithm below. E.g., in the case of metallic graing N is twice the
- Debye frequency in units of the average level spacing (inversely proportional to
volume of the grain). For nuclear pairing models, N could be the number of states
i one or more major energy shells. '
. To make a connection to quantum algorithms we map the fermionic or bosonic
perators to qubit operators. We denote the raising and lowering operators for the
it qubit by the Pauli matrices o, acting non-trivially only on the m® qubit.
snumber operator” i§ nm = (05, + 1)/2, where nm = 1 (D) if the m™ qubit is
‘state 11) (10)); n = 2T IS the number of 1's in a computational basis state
{a ket of a single bit-string), and will correspond, eg., to the number of Cooper
pairs in our applications below. The computational ground state |[0) = 10102 -+ O}
scts as a vacuum state: nj0) = 0,]0) = 0. Now we can consider three generic
pairing cases and map them fo qubits. In each case we identify fermionic or
‘bosonic operator pairs that satisfy the commutation tules of sl(2) = {o}, 0,07}

(see [47] for details). These cases are: (i) Fermionic particle-particle pairs (e.g.,
: iy

‘Cooper. pairs): si(2) = {c;mcm,cinct_m,nf; +nfl - —1}, provided nf, = n,, (a
condition satisfied by Hacs), and [0) = |0)r. (i) Fermionic particle-hole pairs

(e.g., excitons): sl(2) = (et em, el m,nk, - nf .}, provided nk +nf,, = 1and
0) =cl s c_T_ 0) . (iii) Bosonic particle-hole’ pairs (€.8., dual-rail photons in
N 2C— 1Y) F OTAC POTILCHE 2" pat ,

“the optical quantum computer proposal A8]):sl(2) = (b1 by Bl B, 5, — nB.}

= 1 and !0) be_N E bi‘_'zbi_ll[)) 5. The three conditions above
‘each restrict the dynamics to a different subspace of the entire Hilbert space. The

_conditions play the role of conserved quantities and only Hamiltonians that satisfy

fliem preserve such subspaces. L _

 We may now express Hpos in terms of qubit operators. In fact, a more general

Hamiltonian, that is applicable to all cases (1)-(31) is:

N ' N V”"

Hy=Y o+ 2, ot +rotot), (2)
m=1 r==% I>m=1

V;,tm and Vi = ¢ for -ch’s';“z-,m now denote both state indices

H'P = Span{m) ; Un+1|0)= J?_U}t)[}): o } :
is ﬁiappéd:'intd ;ép"_'s'ubSpa'i:eE of the total ferrionic Hilbert space where nfl=nlf .
Hycs ‘conserves the total number operator 7t (the number of Cooper pairg). In terms
of qubits, this means that the number of |1)’s in a general N-qubit state is fixed by

Hgs. Thus the Hilbert space splits into invariant subspaces with dimension (ﬂ) |

 for fixed n. The problem is educed o diagonalizing separate blocks of size (f )

For Talf-filled stabes in & system with N = 100, an-exact solution ‘could require -
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diagoﬂalizingl:' 8- 10% 3. 10%-dimensiona! matrix. Such a task is clearly'unfeégsib

on & classical computer if one does not use approximations such as a perturbatio

calculation or DMRG methods: - o e
We will develop an algorithm for the simulation of

Up(kfr) = exp(~iHykT),

for k=1,..,Tf7, where T'is ... and 7 is ... ‘This will be a polynomial-time algorithn
using, for concreteness, the NMR Hamiltonian. We will use the standard conventic
that a spin +1/2 state represents 0} and & -1/2 state will represent |1} 80 that o
computational basis states {tensor products of zeros and ones} are represented
tensor products of the spin 1/2 states. : L

The algorithm is broken into five parts. (1) Initialize the system in a cormiy
tational basis state lzn) with a fixed n (number of [1)s). (2) Evolve ) qt
adiabatically to [{0)) = |g,,) +4 len) where |g,) is the ground state of H,, len} isthe
first excited state, and § < 1. (3) Transform [9(0)}s to [¥(0)) = n,n1) +8 ey i
a state that includes contributions from n & 1. {4) Implement Up(t) = exp(~iHyt)
on [%(0)). (5) Measure: Repeat steps (1)-(5) while increasing ¢ in step {(5). 71
Hamiltonian situlation part of the algorithm has been broken up into parts to det
the quasi-adiabatic evolution. . - ' S

Step (1)-Tnitialization: The initialization of a liquid state NMR systerri”
purposes of quantum information processing has been discussed in several place
the Literature, notably 49, 50]. ) 7 e

Step (2)- Adiabatic Evolution: Lét 2A be the gap between the ground and;th
first excited states, and let 0 < eft) <1, ¢(0) = 0, e(T) =1, be a slowly v
function, i.e:, 2r/T < 2A (e.g., c(t) = t/T). Consider the time-ordered evoltitio
Uaa(t) = Texp(—) [ H{[}[]) under o time-dependent Hamiltonian H(t) =:
c{t)Hr. For sufciently small = this factors into a product : S

Uad(rlﬂT) R: é—'if[{l’i“?’)'f L e—iH(2fr)Té—-iH(7‘}T + O(Tz),

where exp(—~1H{j7)7) =~ exp(~iHypr) exp(—ic(§r)Hrr) (j = 1,.., k), and néy
choose times 7,,(5) (for turning on —J10705,) such that 2Jimy() = [Vilre
Since () is slow, Una(kr) will represent. an adiabatic evolution. Adiabatic evoliiti
usually ensures that the systern will be in an eigenstate of H, = A(T) at T'
provided the initial state is'in an eigenstate of Hy. Moreover, this will be a gro
state |g,) of Hy, (a state with fixed n} if the initial state is the ground state of
(a computational basis state Jzn)). In order to probe the low-lying spectr
may-slightly relax the adiabatic condition T/T <A, or k> n/(rA). This ca
defined in terms of the adiabatic expansion where the first order constrain
usual adiabatic assumption.’ Here we only ‘wish to satisfy thé second order ‘¢oy
[51]. Then we ébtain a state [1(0))y == |g,,) + 6len) which contains a small comp
len) ‘of some of the Tow-lying excited states of Hy (with the same n), "

©. i Step (8)- Transformation. To probe states with different 7 we trarsfor

e (00} % gy + 8 femin) s




