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Abstract—It is known that the Entropy Power In-
equality (EPI) always holds if the random variables
have density. Not much work has been done to identify
discrete distributions for which the inequality holds
with the differential entropy replaced by the discrete
entropy. Harremoës and Vignat showed that it holds
for the pair (B(m, p),B(n, p)), m, n ∈ N, (where
B(n, p) is a Binomial distribution with n trials each
with success probability p) for p = 0.5. In this paper,
we considerably expand the set of Binomial distribu-
tions for which the inequality holds and, in particular,
identify n0(p) such that for all m, n ≥ n0(p), the EPI
holds for (B(m,p), B(n, p)). We further show that the
EPI holds for the discrete random variables that can be
expressed as the sum of n independent and identically
distributed (IID) discrete random variables for large
n.
Index Terms—Entropy power inequality, Taylor’s

theorem, asymptotic series, binomial distribution.

I. INTRODUCTION
The Entropy Power Inequality

e2h(X+Y ) ≥ e2h(X) + e2h(Y ) (1)

holds for independent random variables X and Y
with densities, where h(·) is the differential entropy.
It was first stated by Shannon in Ref. [1], and the
proof was given by Stam and Blachman [2]. See
also Refs. [3], [4], [5], [6], [7], [8], [9].
This inequality is, in general, not true for dis-

crete distributions where the differential entropy is
replaced by the discrete entropy. For some special
cases (binary random variables with modulo 2 ad-
dition), results have been provided by Shamai and
Wyner in Ref. [10].
More recently, Harremoës and Vignat have shown

that this inequality will hold if X and Y are
B(n, 1/2) and B(m, 1/2) respectively for all m, n
[11]. Significantly, the convolution operation to get
the distribution ofX+Y is performed over the usual
addition over reals and not over finite fields.

Recently, another approach has been expounded
by Harremoës et. al. [12] and by Johnson and
Yu [13], wherein they interpret Rényi’s thinning
operation on a discrete random variable as a dis-
crete analog of the scaling operation for continuous
random variables. They provide inequalities for the
convolutions of thinned discrete random variables
that can be interpreted as the discrete analogs of the
ones for the continuous case.
In this paper, we take a re-look at the result by

Harremoës and Vignat [11] for the Binomial family
and extend it for all p ∈ (0, 1). We show that there
always exists an n0(p) that is a function of p, such
that for all m, n ≥ n0(p),

e2H[B(m+n,p)] ≥ e2H[B(m,p)] + e2H[B(n,p)], (2)

whereH(·) is the discrete entropy. The result in Ref.
[11] is a special case of our result since we obtain
n0(0.5) = 7 and it can be checked numerically by
using a sufficient condition that the inequality holds
for 1 ≤ m, n ≤ 6.
We then extend our results for the family of

discrete random variables that can be written as the
sum of n IID random variables and show that for
large n, EPI holds.
We also look at the semi-asymptotic case for the

distributions B(m, p) with m small and B(n, p)
with n large. However, when n is large, there may
exist some m such that EPI does not hold.
The proofs for all the lemmas and theorems

except that of Theorem 2 and 3 are omitted due
to lack of space, but they are available in Ref. [14].

II. EPI FOR THE BINOMIAL DISTRIBUTION
Our aim is to have an estimate on the threshold

n0(p) such that

e2H[B(m+n,p)] ≥ e2H[B(m,p)] + e2H[B(n,p)], (3)
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holds for all m, n ≥ n0(p).
It is observed that n0(p) depends on the skew-

ness of the associated Bernoulli distribution. Skew-
ness of a probability distribution is defined as
κ3/

√

κ3
2 where κ2 and κ3 are respectively the sec-

ond and third cumulants of the Bernoulli distribution
B(1, p), and it turns out to be (2p− 1)/

√

p(1 − p).
Let

ω(p) =
(2p − 1)2

p(1 − p)
. (4)

We find an expression for n0(p) that depends on
ω(p). The well known Taylor’s theorem will be
useful for this purpose (see for example p. 110 in
Ref. [15]) and is stated as follows.
Suppose f is a real function on [a, b], n ∈ N,

the (n − 1)th derivative of f denoted by f (n−1) is
continuous on [a, b], and f (n)(t) exists for all t ∈
(a, b). Let α, β be distinct points of [a, b], then there
exists a point y between α and β such that

f(β) = f(α) +
n−1
∑

k=1

f (k)(α)

k!
(β − α)k

+
f (n)(y)

n!
(β − α)n. (5)

For 0 ≤ p ≤ 1, let H(p) denote the discrete
entropy of a Bernoulli distribution with probability
of success p, that is, H(p) ! −p log(p) − (1 −
p) log(1 − p). We shall use the natural logarithm
throughout this paper. Note that we earlier defined
H(·) to be the discrete entropy of a discrete random
variable. The definition to be used would be amply
clear from the context in what follows. Let

Ĥ(x) ! H(p) − H(x), x ∈ (0, 1), (6)

F (k)(x) !
Ĥ(k)(x)

k!
. (7)

Note that Ĥ(x) satisfies the assumptions in the
Taylor’s theorem in x ∈ (0, 1). Therefore, we can
write

Ĥ(x) = Ĥ(p) +
n−1
∑

k=1

F (k)(x)(x − p)k

+ F (n)(x1)(x − p)n, (8)

for some x1 ∈ (x, p). Note that Ĥ(p) = 0.
For even k, F (k)(x) ≥ 0 for all x ∈ (0, 1), and

hence,

Ĥ(x) ≥
2l+1
∑

k=1

F (k)(p)(x − p)k (9)

for all x ∈ (0, 1) and any non-negative integer l.
The following useful identity would be employed at
times

log(2) − H(p) =
∞
∑

ν=1

22ν

2ν(2ν − 1)

(

p −
1

2

)2ν

. (10)

Let P ! {pi} and Q ! {qi} be two probability
measures over a finite alphabet A. Let C(p)(P, Q)
and %(p)

ν (P, Q) be measures of discrimination de-
fined as

C(p)(P, Q) ! pD(P ‖ M) + qD(Q ‖ M), (11)

%(p)
ν (P, Q) !

∑

i∈A

|ppi − qqi|2ν

(ppi + qqi)2ν−1
, (12)

where M = pP + qQ,q = 1− p and D(· ‖ ·) is the
Kullback-Leibler divergence. These quantities are
generalized capacitory discrimination and triangular
discrimination of order ν respectively that were
introduced by Topsøe [16].
The following theorem relates C(p)(P, Q) with

%(p)
ν (P, Q) and would be used later to derive an

expression for n0(p). It generalizes Theorem 1 in
Ref. [16].

Theorem 1. Let P and Q be two distributions over
the alphabet A and 0 < p < 1. Then

C(p)(P, Q) =
∞
∑

ν=1

%(p)
ν (P, Q)

2ν(2ν − 1)
− [log(2) − H(p)].

Let X(n) be a discrete random variable that can
be written as X(n) = Z1+Z2+· · ·+Zn, where Zi’s
are IID random variables. We note that whenX(n) is
defined as above, we have X(n)+X(m) = X(n+m).
Let Yn ! e2[H(X(n))]. We first use a lemma due to
Harremoës and Vignat [11].

Lemma 1 (Harremoës and Vignat [11]). If Yn/n is
increasing, then Yn is super-additive, i.e., Ym+n ≥
Ym + Yn.

It is not difficult to show that this is a sufficient
condition for the EPI to hold [11]. By the above
lemma, the inequality

H(X(n+1)) − H(X(n)) ≥
1

2
log

(

n + 1

n

)

(13)

is sufficient for EPI to hold. Let X(n) = B(n, p).
We have

PX(n+1)(k + 1) = pPX(n)(k) + qPX(n)(k + 1). (14)
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Fig. 1. Plot of e2H[B(3,p)]
−

˘

e2H[B(2,p)] + e2H[B(1,p)]
¯

versus p.

Define a random variable X(n) + 1 as PX(n)+1(k +

1) = PX(n)(k) for all k ∈ {0, 1, · · · , n}.
Hence, using H(X(n) + 1) = H(X(n)), PX(n+1) =

pPX(n)+1 +qPX(n) and (11), we generalize Eq. (3.7)
in Ref. [11] as

H(X(n+1)) = H(X(n)) + C(p)(PX(n)+1, PX(n)). (15)

We now derive the lower bound for
C(p)(PX(n)+1, PX(n)).
Lemma 2. For l ∈ N,

C(p)(PX(n) , PX(n)+1) ≥
2l+1
X

k=1

F (k)(p)(n + 1)−kµ
(n+1)
k ,

where µ(n)
k is the k-th central moment of B(n, p),

i.e.,

µ(n)
k =

n
∑

i=0

(i − np)kPX(n)(i). (16)

We note that there exist m, n for p '= 0.5 for
which EPI does not hold, that is,

e2H[B(m+n,p)] < e2H[B(m,p)] + e2H[B(n,p)].

In fact, one can easily see that

e2H[B(2,p)] ≤ e2H[B(1,p)] + e2H[B(1,p)] ∀ p,

with equality if and only if p = 0.5.
For the case m = 1 and n = 2, it is clear from th

Fig. 1 that EPI holds when p is close to 0.5, while
EPI does not hold if p is close to 0 or 1. This leads
us to the question that for a given p, what should
m, n be such that the EPI would hold. The main
theorem of this section answers this question.

Theorem 2.

H [B(n + 1, p)] − H [B(n, p)] ≥
1

2
log

(

n + 1

n

)

∀ n ≥ n0(p).

Several candidates of n0(p) are possible such as
n0(p) = 4.44 ω(p) + 7 and n0(p) = ω(p)2 +
2.34 ω(p) + 7.

Proof: See the Appendix.
Using Lemma 2, we can obtain a non-asymptotic

lower bound to the entropy of the binomial distribu-
tion unlike the asymptotic expansion of H [B(n, p)]
given in Ref. [17]. For details, see Ref. [14].

III. EPI FOR THE SUM OF IID
We showed in the previous section that EPI holds

for the pair (B(n, p), B(m, p)) for all m, n ≥
n0(p). The question naturally arises whether EPI
holds for all such discrete random variables that can
be expressed as sum of IID random variables. Let
X(n) be a discrete random variable such that

X(n) ! X1 + X2 + · · · + Xn, (17)

where Xi’s are IID random variables and σ2 is the
variance of X1. The series

∑

∞

l=1 alφl(n) is said to
be an asymptotic expansion for f(n) as n → ∞ if

f(n) =
N

∑

l=1

alφl(n) + o[φN (n)] ∀ N, (18)

and is written as f(n) ∼
∑

l alφl(n), where if
γ(n) ∈ o[φ(n)], then limn→∞ γ(n)/φ(n) = 0. We
shall use the asymptotic expansion due to Knessl
[17].
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Lemma 3 (Knessl [17]). For a random variable
X(n), as defined above, having finite moments, we
have as n → ∞,

g(n) ! H(X(n)) −
1

2
log(2πenσ2)

∼ −
κ2

3

12σ6

1

n
+

∞
∑

l=1

βl

nl+1
, (19)

where κj is the jth cumulant of of X1. If κ3 = κ4 =
· · · = κN = 0 but κN+1 '= 0, then

g(n) ∼ −
κ2

N+1

2(N + 1)!σ2N+2
n1−N +

∞
∑

l=N−1

βl

nl+1
.

Note that the leading term in the asymptotic
expansion is always negative. We also note using
Lemma 3 that as n → ∞,

H(X(n)) <
1

2
log(2πenσ2). (20)

To see this, we invoke the definition of the asymp-
totic series to get

g(n) = −
κ2

N+1

2(N + 1)!σ2N+2
n1−N+

βN−1

nN
+o

(

1

nN

)

.

From the definition of the “little-oh” notation, we
know that given any ε > 0, there exists a L(ε) > 0
such that for all n > L(ε),

g(n) = −
κ2

N+1

2(N + 1)!σ2N+2
n1−N +

βN−1 + ε

nN
.

Choosing n large enough, we get the desired result.
We consider the case of the pair (X(n), X(m)) when
both m, n are large and have the following result.

Theorem 3. There exists a n0 ∈ N such that

e2H(X(m)+X(n)) ≥ e2H(X(m)) + e2H(X(n)) (21)

for all m, n ≥ n0.

Proof: We shall prove the sufficient condition
for the EPI to hold (as per Lemma 1) and show that

H(X(n+1)) − H(X(n)) ≥
1

2
log

(

n + 1

n

)

(22)

for n ≥ n0 for some n0 ∈ N.
Let us take the first three terms in the above

asymptotic series as

g(n) ∼ −
C1

nk1
+

C2

nk2
+

C3

nk3
(23)

where 0 < k1 < k2 < k3 and C1 is some non-zero
positive constant, and hence,

g(n) +
C1

nk1
−

C2

nk2
−

C3

nk3
= o

(

1

nk3

)

. (24)

and given any ε > 0, there exists a L(ε) > 0 such
that for all n > L(ε),

∣

∣

∣

∣

g(n) +
C1

nk1
−

C2

nk2
−

C3

nk3

∣

∣

∣

∣

≤ ε

∣

∣

∣

∣

1

nk3

∣

∣

∣

∣

. (25)

From the above inequality, we have, by using the
lower and upper bounds respectively for g(n + 1)
and g(n), that

g(n + 1) − g(n) ≥ C1

[

1

nk1
−

1

(n + 1)k1

]

+

C2

[

1

(n + 1)k2
−

1

nk2

]

+

[

C3 − ε

(n + 1)k3
−

C3 + ε

nk3

]

.

From the above expression, we can clearly see that
the first term is strictly positive and is Θ

(

1/nk1+1
)

.
The second and third terms (their signs are irrele-
vant) are of the order Θ(1/nk2+1) and Θ(1/nk3)
respectively. The Θ(·) means both asymptotic lower
and asymptotic upper bounding. It is clear that there
exists some positive integer n0 such that for all
n ≥ n0, first (positive) term will dominate and the
other two terms will be negligible compared to the
first and hence g(n + 1) − g(n) ≥ 0.
It must be noted that if one considers the pair

(X(n), X(m)) where n → ∞ and m is fixed, then
the EPI need not hold. As can can be seen in our
paper [14], it can be shown that

e2H(X(m)+X(n)) ≥ e2H(X(m)) + e2H(X(n))

if n → ∞ and H(X(m)) < 1
2 log[2πemσ2].

IV. CONCLUSIONS
We have expanded the set of pairs of Binomial

distributions for which the EPI holds. We identified
a threshold that is a function of the probability of
success beyond which the EPI holds. We further
show that EPI would hold for discrete random
variables that can be written as sum of IID random
variables. We also obtain an improvement of a
bound given by Artstein et. al. [6] (see Ref. [14]).
It would be interesting to know if

C(p)(PX(n)+1, PX(n)) for X(n) = B(n, p) is a
concave function in p. It would also be of
interest to know that for a given p ∈ (0, 0.5) if
H [B(n + 1, p)] − H [B(n, p)] − 0.5 log(1 + 1/n)
would have a single zero crossing as a function of
n when n increases from 1 to ∞.
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APPENDIX
PROOF OF THEOREM 2

We prove that for all n ≥ n0(p),

H [B(n + 1, p)] − H [B(n, p)] ≥
1
2

log

„

n + 1
n

«

(26)

Using Lemma 2, we have

H [B(n + 1, p)] − H [B(n, p)]

≥
2l+1
∑

k=1

F (k)(p)(n + 1)−kµ(n+1)
k . (27)

Let r = p − 1/2 and t = ω(p) = 16r2/(1 − 4r2).
We have r2 = t/[4(t + 4)].
Note that r2 ∈ [0, 1/4) and t ∈ [0,∞). We will

use the first seven central moments of B(n, p) and
they contain only even powers of r and hence, can
be written as a function of t.
We upper bound the right hand side of (26) as

log

(

n + 1

n

)

≤
1

n
−

1

2n2
+

1

3n3
. (28)

Define

f(n, t) !

7
X

k=1

F (k)

»r

t

4(t + 4)
+

1
2

–

(n + 1)−kµ
(n+1)
k

−
1
2

„

1
n

+
1

2n2
−

1
3n3

«

.

Proving (26) is equivalent to showing that f(n, t) ≥
0 ∀ n > n0(p). Simplifying

f(n, t) =
1

420(n + 1)6n3

h

35n7t + (70 + 315t + 35t2)n6

− (315 + 2989t + 3339t2 + 721t3)n5

− (826 − 721t − 371t2 + 1568t3 + 546t4)n4

− (826 + 90t + 135t2 + 157t3 + 10t5 + 66t4)n3

− 630n2 − 315n − 70
i

. (29)

Define g(n, t) ! 420(n + 1)6n3f(n, t).
A simple but elaborate calculation yields

g(4.44t + 7 + m, t) ≈ 35tm7 + (1122.8t2 +
2030t + 70)m6 + (14700.90t3 + 52210.20t2 +
48120.80t+2625)m5+(1.01t4 +5.32t3 +9.57t2 +
6.06t+0.40)105m4 +(3.85t5+26.94t4+72.32t3+
88.61t2+43.61t+3.02)105m3+(7.76t6+68.23t5+
247.042t4 + 456.97t3 + 433.17t2 + 176.77t +
11.80)105m2 + (6.47t7 + 70.91t6 + 338.88t5 +
880.98t4 + 1297.85t3 + 1030.51t2 + 361.59t +
20.14)105m + (0.15t8 + 56.29t7 + 709.80t6 +
3485.03t5 +8728.40t4 +11955.74t3 +8613.06t2 +
2628.77t + 64.15)104.
Note that all the coefficients are positive and

hence, f(4.44t + 7 + m, t) ≥ 0 for all m ≥ 0
or f(n, t) ≥ 0 for all n ≥ 4.44t + 7. A more
careful choice would yield all coefficients to be
positive for n ≥ 4.438t + 7. Yet another choice
that would yield all coefficients as positive would
be n ≥ t2 + 2.34t + 7. Note that this choice would
be better for 0 < t < 2.1 and, in particular, for
t = 1, the first choice yields (after constraining n to
be a natural number) n ≥ 12 while the second one
yields n ≥ 11. Further refinements are also possible.
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