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Abstract

Using holography, we study the entanglement entropy of strongly coupled field theories perturbed by
operators that trigger an RG flow from a conformal field theory in the ultraviolet (UV) to a new theory
in the infrared (IR). The holographic duals of such flows involve a geometry that has the UV and IR
regions separated by a transitional structure in the form of a domain wall. We address the question
of how the geometric approach to computing the entanglement entropy organizes the field theory data,
exposing key features as the change in degrees of freedom across the flow, how the domain wall acts as a
UV region for the IR theory, and a new area law controlled by the domain wall. Using a simple but robust
model we uncover this organization, and expect much of it to persist in a wide range of holographic RG
flow examples. We test our formulae in two known examples of RG flow in 3+1 and 2+1 dimensions
that connect non–trivial fixed points.
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1 Introduction

A useful probe of the properties of various field theories that has received increased interest in recent times

is the entanglement entropy, with applications being pursued in diverse areas such as condensed matter

physics, quantum information, and quantum gravity. One of the main motivators, in the context of strongly

coupled field theories (perhaps modeling novel new phases of matter), is that the entanglement entropy may

well act as a diagnostic of important phenomena such as phase transitions, in cases where traditional order

parameters may not be available.

Within a system of interest, consider a region or subsystem and call it A, with the remaining part

of the system denoted by B. A definition of the entanglement entropy of A with B is given by:

SA = −TrA (ρA ln ρA) , (1)

where ρA is the reduced density matrix of A given by tracing over the degrees of freedom of B, ρA = TrB(ρ),

where ρ is the density matrix of the system. When the system is in a pure state, i.e., ρ = |Ψ〉〈Ψ|, the

entanglement entropy is a measure of the entanglement between the degrees of freedom in A with those in B.

It is of interest to find ways of computing the entanglement entropy in various strongly coupled

systems, in diverse dimensions, and under a variety of perturbations, such as the switching on of external

fields, or deformations by relevant operators. A powerful tool for studying such strongly coupled situations

is gauge/gravity duality, which emerged from studies in string theory and M-theory. The best understood

examples are the conjectured AdS/CFT correspondence and its numerous deformations [1, 2, 3, 4] (See

e.g., ref.[5] for an early, but still very useful, review.) There has been a great deal of activity for over a

decade now, applying these tools to strongly coupled situations of potential interest in condensed matter

and nuclear physics, for example. Fortunately, there has been an elegant proposal[6, 7] for how to compute

the entanglement entropy in systems with an Einstein gravity dual (or, more generally, a string or M–theory

dual in the large N limit and large t’ Hooft limit), which provides a new way to calculate the entanglement

entropy using geometrical techniques (for a review see ref.[8]). In an asymptotically Anti–de Sitter (AdS)

geometry, consider a slice at constant AdS radial coordinate z = a. Recall that this defines the dual field

theory (with one dimension fewer) as essentially residing on that slice in the presence of a UV cutoff set by

the position of the slice. Sending the slice to the AdS boundary at infinity removes the cutoff (see ref. [5] for

a review). On our z = a slice, consider a region A. Now find the minimal–area surface γA bounded by the

perimeter of A and that extends into the bulk of the geometry. (Figure 1 shows examples of the arrangement

we will consider in this paper.) Then the entanglement entropy of region A with B is given by:

SA =
Area(γA)

4GN
, (2)

where GN is Newton’s constant in the dual gravity theory.
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(b) The disc.

Figure 1: Diagrams of the two shapes we will consider for region A. This is the case of AdS4, and here, z denotes
the radial direction in AdS4. In one dimension higher we will generalize these shapes to a box and a round ball, and
in one dimension fewer, we will consider an interval.

This prescription for the entropy coincides nicely with various low dimensional computations of the

entanglement entropy, and has a natural generalization to higher dimensional theories. Note that there is

no formal derivation of the prescription. Steps have been made, such as in refs. [9, 10], but they are not

complete. However, there is a lot of evidence for the proposal. See e.g., refs.[11, 12, 13, 14, 15, 16]. A review

of several of the issues can be found in ref.[8]. Further progress has been made recently in ref. [17].

In this paper we shall assume that this holographic prescription does give the correct result for the

entanglement entropy in systems with gravity duals, and proceed to examine the interesting question of how

the entanglement entropy behaves when a system is perturbed by an operator that triggers a Renormalization

Group (RG) flow. For simplicity, we will work with flows that connects two conformal field theories, and we

will consider (for concreteness) a four dimensional example and one in three dimensions. Such examples are

extremely natural to study using holographic duality since (at large N) it is possible to find geometries that

represent the full flow from the maximally supersymmetric theory to theories with fewer super symmetries.

(This was first proposed in refs.[18, 19], and several examples have since been found.) Flow between field

theory fixed points correspond to flows between fixed points of the supergravity scalar potential. The

examples we will study begin with the four dimensional case of the flow[20, 21, 22] to the Leigh–Strassler

point[23, 24], which results from giving a mass to one of the N = 1 chiral multiplets that make up the N = 4

Yang Mills gauge multiplet. We then continue with the three dimensional generalization of it discussed in

ref. [25]. The gravity dual of the four dimensional flow connects AdS5 × S5 at the r = +∞ extreme of a

radial coordinate r to AdS5 ×M5 at r = −∞, where the spaceM5 results from squashing the S5 along the

flow. There are two of the 42 supergravity scalars switched on at the latter endpoint, and correspondingly

the characteristic radius of the AdS5 in the IR is larger than that of the UV theory: The gravity dual for

the three dimensional flow has related structures, this time connecting an AdS4 × S7 UV geometry to an

AdS4 ×M7 in the IR, where M7 results from squashing the S7 along the flow.
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Before studying the specific examples, however, we step back and try to anticipate some of the

key physics that we should expect from the entanglement entropy in this type of situation, more generally.

Generically, holographic RG flow involves a flow from one dual geometry in the UV to another in the IR,

separated by an interpolating region that can be thought of as a domain wall separating the two regions.

The key to understanding the behaviour of the content of the holographic entanglement entropy formula is

to then understand how the computation incorporates the structure of the domain wall, and how the field

theory quantities it extracts are encoded. To anticipate how to mine this information, we do an analytic

computation of the proposed entanglement entropy (2) in an idealized geometry given by a sharp domain

wall separating two AdS regions with different values for the cosmological constant. Working in various

dimensions (AdS5, AdS4, and AdS3, pertaining to flows in four, three, and two dimensional field theories),

we find a fascinating and satisfying structure, seeing how the entanglement entropy tracks the change in

degrees of freedom under the flow, and several other features. We expect that these features will be present

in a wide range of examples, and we confirm our results in the examples mentioned above.

The outline of this paper is as follows. In section 2 we carry out the study of the entanglement entropy

in the presence of the idealized (i.e., sharp domain wall) holographic RG flow model, and discover how the

physics is organized in the results. Then, ready to study examples, we review the four dimensional Leigh–

Strassler RG flow of interest, and its dual AdS5 flow geometry in section 3. We explicitly solve (numerically)

the non–linear equations that define the geometry and scalars in the interpolating dual supergravity flow.

We then compute the entanglement entropy and extract the physics, comparing to our predictions from

section 2. Section 4 presents the analogous studies for the three dimensional field theory, with the AdS4 dual

flow geometry. We end with a discussion in section 5.

2 Entanglement Entropy and a Sharp Domain Wall Model

As mentioned in the introduction, the generic holographic RG flow involves a flow from one dual geometry in

the UV to another in the IR, separated by an interpotating domain wall. In all examples, understanding the

behaviour of holographic entanglement entropy, as proposed in equation (2), requires us to understand how

the area formula incorporates the structure of the domain wall in terms of field theory quantities. So we start

by doing an analytic computation in an idealized geometry given by a sharp domain wall in AdS. In general,

the location of the wall, and its thickness, are determined by field theory parameters corresponding to the

details of the relevant operator - for example, in the case of the Leigh–Strassler flow and its generalization we

later study, the detail in question is the bare value of the mass given to the chiral multiplet. A sharp domain

wall is of course not a supergravity solution, and falls somewhat outside the usual supergravity duality to

any (large N) theory, but nevertheless is a clean place to start to capture how the physics is organized. We

expect it to capture a great deal of the key physics of holographic RG flow, as regards how the entanglement
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entropy formula works.

We use the following background metric:

ds2 = e2A(r)
(
−dt2 + d~x2

)
+ dr2 , (3)

with

A(r) =

{
r/RUV , r > rDW
r/RIR , r < rDW

. (4)

Here −∞ < r < +∞, and ~x is either four, three, or two coordinates (the spatial coordinates of the dual

field theory), depending upon whether we are in AdS5, AdS4, or AdS3, the cases we will consider. Also,

RIR > RUV. The length scale of AdS on either aide of the wall is set by RUV in the UV at r > rDW and

RIR in the IR at r < RDW .

2.1 The Ball and AdS5.

We begin by studying a region A in the three spatial dimensions which is a round ball of radius `. Using a

radial coordinate ρ in the spatial dimensions, the area of the surface, γ, that extends into the bulk is given

by:

Area = 4π

∫ `

0

dρ ρ2e3A(r)
(

1 + e−2A(r)r′(ρ)2
)1/2

, (5)

where the function r(ρ) defines the enbedding. We can calculate the equations of motion that result from

minimizing this “action,” and we find that the solution is given by:

r(ρ) =


−RUV

2 ln
(
`2+ε2−ρ2
R2

UV

)
, ρ ≥ ρDW

−RIR

2 ln

(
`2+ε2−ρ2+R2

IRe
−2

rDW
RIR −R2

UVe
−2

rDW
RUV

R2
IR

)
, ρ < ρDW

(6)

where rDW is the position of the domain wall in the AdS radial direction, and ρDW is the spatial radial

position where r(ρDW ) = rDW and is given by:

ρ2DW = `2 + ε2 −R2
UVe

−2 rDW
RUV . (7)

Note that, rather than integrating out to r = +∞, we integrate out to large positive radius rUV, defining

our UV cutoff, with small ε defined by:

rUV = −RUV ln

(
ε

RUV

)
. (8)

Note that with the solution given for ρ(ρ), we are assuming that ` is larger than a critical radius `cr such

that our surface extends past the doman wall into the second AdS region. The critical radius `cr is given by

setting ρDW = 0 in the above:

`2cr = R2
UVe

−2 rDW
RUV − ε2 . (9)
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Substituting the solution back into equation (5), we can analytically calculate the area of our minimal

surface, γA, and hence the entanglement entropy via equation (2). This gives a long expression that we will

not display here. For our purposes it is enough to first expand the area for small ε:

Area

4π
=

R3
UV

2

[
`2

ε2
+ ln

( ε
`

)]
+
R3

UV

4
[1− 2 ln(2)]

−1

2
e
2

rDW
RUV RUV`

√
`2 −R2

UVe
−2 rDW

RUV +
1

2
R3

UV tanh−1


√
`2 −R2

UVe
−2 rDW

RUV

`


+
RIR

2
e
2

rDW
RIR

√
`2 −R2

UVe
−2 rDW

RUV

√
`2 +R2

IRe
−2 rDW

RIR −R2
UVe

−2 rDW
RUV

−R
3
IR

2
tanh−1


√√√√ `2 −R2

UVe
−2 rDW

RUV

`2 +R2
IRe
−2 rDW

RIR −R2
UVe

−2 rDW
RUV

+O(ε) . (10)

We find it useful to rewite it in a suggestive way:

Area

4π
=

R3
UV

2

[
`2

ε2
+ ln

( ε
`

)]
+
R3

UV

4
[1− 2 ln(2)]

−1

2
e
2

rDW
RUV RUV`

√
`2 − ˜̀2

cr +
1

2
R3

UV tanh−1


√
`2 − ˜̀2

cr

`


+
RIR

2
e
2

rDW
RIR

√
`2 − ˜̀2

cr

√
`2 − ˜̀2

cr +R2
IRe
−2 rDW

RIR

−R
3
IR

2
tanh−1

√√√√ `2 − ˜̀2
cr

`2 − ˜̀2
cr +R2

IRe
−2 rDW

RIR

+O(ε) , (11)

where

˜̀2
cr = R2

UVe
−2 rDW

RUV = `2cr +O(ε2) . (12)

There are a number of notable features of this expression. First, we see the results from pure AdS5 in the

first line. There, we see the usual UV divergent terms and the `–independent constant that results from the

fact that the ball preserves some of the conformal invariance of AdS5. Second, the terms that have RIR as

coefficients (the last two lines) always have `2 appearing in the combination:

˜̀2 = `2 −R2
UVe

−2 rDW
RUV = `2 − `2cr +O(ε2) . (13)

We are tempted to interpret this ˜̀ as the effective ball radius as seen in the IR, as opposed to the simple `

seen in the UV. Furthermore, the combination:

ε̃ = RIRe
− rDW

RIR (14)

appears in a manner analogous to how the UV cut-off ε appears. (This might not be clear in our ε expansion

of the above equation. One way to see that it does appear as ε does is to look at equation (6)). Now ε̃ is not
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necessarily small, but we will see that it is useful to think of it as the cut–off in the IR theory. With these

observations in mind, we rewrite the last three lines of equation (11) as follows:

− R3
UV

2

`˜̀

˜̀2
cr

+
1

2
R3

UV tanh−1

(
˜̀

`

)
+
R3

IR

2

˜̀2

ε̃2

√
1− ε̃2

˜̀2
− R3

IR

2
tanh−1

 1√
1 + ε̃2

˜̀2

 . (15)

Let us focus on the terms proportional to R3
IR. If we expand these terms assuming that ε̃/˜̀<< 1, i.e., the

effective length in the putative IR theory is larger than the IR cutoff, which also means that the length is

such that the surface extends very far past the wall into the IR AdS space, we get:

R3
IR

2

[
˜̀2

ε̃2
+ ln

(
ε̃
˜̀

)]
+
R3

IR

4
[1− 2 ln(2)] +O(ε̃/˜̀) . (16)

Pleasingly, this is exactly the result we would have obtained if we were purely in the IR theory!

So far therefore, we have seen how the entanglement entropy formula encodes key behaviours of

both the UV and the IR theories, in terms of the appropriate scales, ε/` and ε̃/˜̀. The boundary of AdS5

at r = +∞ is the UV region and the quantities of the UV theory appear accordingly. From the point of

view of the IR theory, the domain wall acts (for ε̃/˜̀ small) as the effective UV region, with ε̃/˜̀ acting as the

effective regulator.

We are left with understanding the first two terms in equation (15). These two terms mix the

properties of the UV and the IR regions, and are more subtle. We associate them with the region around the

domain wall, which connects the UV and IR regions (through and abrupt change in our idealized example).

It is prudent to try to understand the role of these terms toward the end of the flow, and so we do a large `

expansion of them, giving:

− R3
UV

2

`˜̀

˜̀2
cr

+
1

2
R3

UV tanh−1

(
˜̀

`

)
= −R

3
UV

2

[
`2

˜̀2
cr

+ ln

(
˜̀
cr

`

)]
+
R3

UV

4
[1 + 2 ln(2)] +O(1/`) . (17)

So we see that these terms give contributions very analogous to our UV and IR results, where here the

reference scale is played by ˜̀
cr. (Note that the constant term is actually different than the UV and IR

constant terms’ form.) At fixed ε or ε̃, we may think of this as a new set of divergences.

Now that we have an understanding of the contributions of the various pieces to the area, we combine

everything together again and consider the large ` (and small ε) expansion:

Area

4π
=

R3
UV

2

[
`2

ε2
+ ln

( ε
`

)]
+
`2

2

(
R3

IR

ε̃2
− R3

UV

˜̀2
cr

)
+
R3

UV

2
ln

(
`

˜̀
cr

)
− R3

IR

2
ln

(
`

ε̃

)
+
R3

UV

2
+
R3

IR

4
− 1

2
R3

IR

˜̀2
cr

ε̃2
− 1

2
R3

IR ln(2) +O

(
1

`
, ε

)
=

R3
UV

2

[
`2

ε2
+ ln

(
ε

˜̀
cr

)]
+
`2

2

(
R3

IR

ε̃2
− R3

UV

˜̀2
cr

)
− R3

IR

2
ln

(
`

ε̃

)
+
R3

UV

2
+
R3

IR

4
− 1

2
R3

IR

˜̀2
cr

ε̃2
− 1

2
R3

IR ln(2) +O

(
1

`
, ε

)
. (18)
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The first key result here is that we no longer have a ln(`) scaling associated with the UV theory. The

remaining ln(`) dependence has a coefficient that is only associated with the IR theory and that is independent

of the domain wall. In a non–RG flow scenario, the coefficient of such a term is determined by the central

charge of the theory (see e.g., refs.[7, 26]), but here we see that the coefficient has shifted from its UV value

(associated with the UV central charge) to its IR value (associated with the IR central charge). The second

thing to note is that the area law associated with the UV cut–off (the first `2 term) is joined by a second

area law. Its coefficient is sourced by the details of the domain wall. For clarity, we display this term here:

`2

2

(
R3

IR

ε̃2
− R3

UV

˜̀2
cr

)
=
`2

2

(
RIRe

2
rDW
RIR −RUVe

2
rDW
RUV

)
. (19)

We expect this new area law to be a robust feature of RG flow geometries, but anticipate that the coefficient’s

precise form will be different as we move away from the thin wall limit we are in here. The above result

predicts that the coefficient grows more positive as rDW is pushed to the UV. In realistic RG flows, while

the domain wall position and sharpness cannot be varied arbitrarily, it is expected to get thinner toward the

UV and so at least in that regime we should recover positivity. Finally, the constant terms in the last line

of equation (18) are a mixture of both the UV, IR, and domain wall physics.

2.2 The Disc and AdS4.

We can repeat the same procedure for AdS4, pertaining to RG flows in 2 + 1 dimensional theories. As our

system A we consider a circular disc of radius `. The solution for the surface embedding are exactly as in

equation (6). We can calculate the minimal area and expand for small ε to get:

Area

2π
= R2

UV

`

ε
−R2

IR −RUVe
rDW
RUV `+RIRe

rDW
RIR

√
`2 −R2

UVe
−2 rDW

RUV +R2
IRe

2
rDW
RIR +O(ε) . (20)

We see the reappearance of many of the key players that we saw in the AdS5 case, such as ˜̀, ˜̀
cr and ε̃,

appearing in similar types of term. For ` = ˜̀
cr, we recover the pure UV result (proportional to `/ε) and also

the constant −R2
UV, the constant ensured by the fact that the disc preserves some conformal invariance, as

expected. For large `, we have:

Area

2π
= R2

UV

`

ε
−R2

UV

`
˜̀
cr

+R2
IR

`

ε̃
−R2

IR +O(ε, 1/`) . (21)

So in the AdS4 case, the constant term shifts from its UV result to its IR result −R2
IR. Again, in addition

to the usual UV area law (proportional to `/ε), we have a new area law controlled by the domain wall:

`

(
R2

IR

ε̃
− R2

UV

˜̀
cr

)
, (22)

which should be compared to the example from AdS5 in equation (19). The same comments we made for

the new area law there apply here: It is not necessarily positive, but we expect it to get more positive as the

domain wall is sent to the UV, where generically it gets thinner.
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2.3 The Case of AdS3.

Next we consider the case of AdS3, pertaining to flows in 1 + 1 dimensions. We use a spatial interval of

length 2` for our region A. The area is given by:

Area

2
= −RUV ln

( ε
`

)
+RUV ln(2)−RUV tanh−1


√
`2 −R2

UVe
−2 rDW

RUV

`


+RIR tanh−1


√√√√ `2 −R2

UVe
−2 rDW

RUV

`2 −R2
UVe

−2 rDW
RUV +R2

IRe
−2 rDW

RIR

+O(ε) (23)

In the large ` limit, this gives

Area

2
= −RUV ln

(
ε

˜̀
cr

)
−RUV −RIR ln

(
ε̃

`

)
+RIR ln(2) +O(ε, 1/`) , (24)

where ˜̀
cr and ε̃ are defined in equations (12) and (14) respectively. So again we see that the universal

coefficient (in front of the natural logarithm) becomes the IR factor in the large ` limit. The IR cutoff

replaces the UV cutoff just as observed before.

2.4 The Strip and AdS4.

We next consider an area A that is a strip in AdS4, to compare our results for the disc. We take the strip

to be of finite width ` in the x direction, and of length L in the remaining direction, which will be taken to

be large, making an infinite strip. The area is given by:

Area = 2L

∫ `/2

0

dx e2A(r)
√

1 + e−2A(r)r′(x)2 . (25)

Since there is no explicit dependence on x, there is a constant of motion in the dynamical problem associated

to minimizing the area. However, we must be careful since the constant of motion on either side of the domain

wall is not the same:
e2A(r)√

1 + e−2A(r)r′(x)2
=

{
e
2 r∗

RUV , r > rDW

e
2 r∗

RIR , r < rDW
. (26)

On the IR side, the constant is simply given by r′(x) = 0, which occurs at a radial position we will denote

as r∗. The constant on the UV side is determined by asking that r′(x) = 0 when r∗ = rDW , which is the

critical situation before our embedding enters the IR AdS. We can in turn calculate the area and length in

terms of r∗ and expand for small ε:

Area

2L
=

R2
UV

ε
−RUVe

rDW
RUV

√
1− e4

r∗−rDW
RUV +RIRe

rDW
RIR

√
1− e4

r∗−rDW
RIR

−e
r∗

RIR

√
πRIRΓ

(
7
4

)
3Γ
(
5
4

) − 1

3
e
−3 rDW

RUV
+4 r∗

RUV RUV2F1

(
1

2
,

3

4
,

7

4
, e

4
r∗−rDW

RUV

)
+

1

3
e
−3 rDW

RIR
+4 r∗

RIRRIR2F1

(
1

2
,

3

4
,

7

4
, e

4
r∗−rDW

RIR

)
. (27)
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`

2
= e

− r∗
RIR

√
πRIRΓ

(
7
4

)
3Γ
(
5
4

) +
1

3
e
−3 rDW

RUV
+2 r∗

RUV RUV2F1

(
1

2
,

3

4
,

7

4
, e

4
r∗−rDW

RUV

)
−1

3
e
−3 rDW

RIR
+2 r∗

RIRRIR2F1

(
1

2
,

3

4
,

7

4
, e

4
r∗−rDW

RIR

)
. (28)

Here, we see the appearance of the Gauss hypergeometric function:

2F1(a, b, c; z) ≡ Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1
(1− tz)a dt . (29)

The large ` limit corresponds to taking r∗ → −∞, which gives us:

Area

2L
=

R2
UV

ε
−RUVe

rDW
RUV +RIRe

rDW
RIR +O(ε,−1/r∗) . (30)

So we see that that the constant term here is exactly the new area law’s coefficient that we saw in the disc

case, in equation (22). Again, far enough in the UV, for large enough mass, our analysis suggests that this

coefficient is positive.

2.5 The Box and AdS5.

Returning to AdS5, we consider for region A a box in AdS5, in order to compare to the round ball we studied

before. Here the finite width is again ` and the two other sides are of length L, which we again take to be

large. The computation proceeds in a similar way. The area gives:

Area

2L2
=

R3
UV

2ε2
− 1

2
RUVe

2
rDW
RUV

√
1− e6

r∗−rDW
RUV +

1

2
RIRe

2
rDW
RIR

√
1− e6

r∗−rDW
RIR

−e2
r∗

RIR

√
πRIRΓ

(
5
3

)
8Γ
(
7
6

) − 1

8
e
−4 rDW

RUV
+6 r∗

RUV RUV2F1

(
1

2
,

2

3
,

5

3
, e

6
r∗−rDW

RUV

)
+

1

8
e
−4 rDW

RIR
+6 r∗

RIRRIR2F1

(
1

2
,

2

3
,

5

3
, e

6
r∗−rDW

RIR

)
, (31)

and taking the r∗ → −∞ limit gives:

Area

2L2
=

R3
UV

2ε2
− 1

2
RUVe

2
rDW
RUV +

1

2
RIRe

2
rDW
RIR +O(ε,−1/r∗) . (32)

Again, we have that the constant term has the same coefficient as the new area law term for the ball case,

as seen in equation (19).

3 The Four Dimensional Holographic RG Flow

3.1 The Holographic Dual Gravity Background

In field theory terms, the RG flow is defined by an N = 1 supersymmetric deformation of the N = 4

supersymmetric Yang Mills theory given by introducing a mass term for one of the chiral multiplets.This

relevant deformation causes the N = 4 theory to flow to an N = 1 fixed point in the IR called the Leigh–

Strassler fixed point [22, 23, 24]. For the SU(N) theory at large N , there is an holographic dual of this

10



physics [20], represented by a flow between two five dimensional anti–de Sitter (AdS5) fixed points of N = 8

gauged supergravity in five dimensions. One point has the maximal SO(6) symmetry, and the other has

SU(2)×U(1), global symmetries of the dual field theories. The relevant five dimensional gauged supergravity

action is [20, 21, 27]:

S =
1

16πG5

∫
d5x
√−g

(
R− 2 (∂χ)

2 − 12 (∂α)
2 − 4P

)
, (33)

with

P =
1

2R2

(
1

6

(
∂W

∂α

)2

+

(
∂W

∂χ

)2
)
− 4

3R2
W 2 , (34)

where the superpotential W is given by:

W =
1

4ρ2
(
cosh(2χ)

(
ρ6 − 2

)
−
(
3ρ6 + 2

))
, (35)

with ρ = exp(α). The scalar field χ is dual to an operator of dimension three in the field theory while the

scalar field α is dual to a dimension two operator:

α :

4∑
i=1

Tr (φiφi)− 2

6∑
i=5

Tr (φiφi) , χ : Tr (λ3λ3 + ϕ1 [ϕ2, ϕ3]) + h.c. , (36)

where ϕk = φ2k−1 + iφ2k, k = 1, . . . , 3. Here φi (i = 1, . . . , 6) are the six scalars in the N = 4 multiplet,

and the λk (three of that adjoint multiplet’s four fermions) are N = 1 partners of the ϕk, forming the three

chiral multiplets. This combination of operators is exactly what is needed to reproduce the deformation.

The geometry in five dimensions, of domain wall form, can be parametrised in the following manner:

ds21,4 = e2A(r)
(
−dt2 + dx21 + dx22 + dx23

)
+ dr2 . (37)

The supergravity equations of motion yield the following flow equations:

dα

dr
=

eα

6R

∂W

∂α
=

1

6R

(
e6α (cosh(2χ)− 3) + cosh(2χ) + 1

e2α

)
,

dχ

dr
=

1

R

∂W

∂χ
=

1

2R

((
e6α − 2

)
sinh(2χ)

e2α

)
,

dA

dr
= − 2

3R
W = − 1

6R

cosh(2χ)
(
e6α − 2

)
−
(
3e6α + 2

)
e2α

. (38)

In these coordinates, the UV is at r → +∞ and the IR is at r → ∞, as in earlier sections. In either limit,

the right hand side of the first two equations vanish, and the scalars run to specific values (α = 0, χ = 0 at

one end, α = 1
6 ln 2, χ = 1

2 ln 3 at the other), while A(r) becomes r
R in the UV and 25/3

3
r
R in the IR, defining

an AdS5 in each case, and hence a conformally invariant dual field theory at each end. This is a fat, smooth

version of our simple thin domain wall model of the previous sections. Here RUV = R and RIR = 3R/25/3.

To study the UV behavior of the fields, we find it convenient to define a coordinate z̃ given by:

z̃ = e−r/R , (39)

11



and we find the asymptotic behavior of the fields near z̃ = 0 (UV AdS boundary):

χ(z̃) = z̃

(
a0 + z̃2

(
−a30 − 4a0a1 + ln(z̃)

8

3
a30

)
+O(z̃4)

)
,

α(z̃) = z̃2
(
a1 + ln(z̃)

(
−2

3
a20

))
+O(z̃4) ,

A(z̃) = − ln(z̃) +A0 −
1

6
a20z̃

2 +O(z̃4) . (40)

The constant a0 is related to the mass of the Φ3 multiplet via [28]:

m3 =
2a0
R

. (41)

To study the IR behavior of the fields, we define a coordinate ũ given by:

ũ = eλr/R , (42)

where λ =
25/3(

√
7−1)

3 . The asymptotic (near ũ = 0) behavior in the IR is given by:

χ(ũ) =
1

2
ln(3) + ũb0 +O(ũ2) ,

α(ũ) =
1

6
ln(2) + ũ

(√
7− 1

6

)
b0 +O(ũ2) ,

A(ũ) =
1√

7− 1
ln(ũ) +B0 +O(ũ2) . (43)

3.2 Numerically Solving for the Flow

To solve the flow numerically (as we will need to do in order to compute the entanglement entropy), it is

convenient to work with a coordinate:

x = z̃2 , (44)

and employ a shooting method to solve the equations. To shoot from the IR we take xmax = 106, and

towards the UV we take x = ε, where we use ε = 10−12. To get good numerical stability, we define new

fields (β, η),

α(x) = xβ(x) , χ(x) = x1/2η(x) , A(x) = −1

2
ln(x) + a(x) , (45)

such that near the AdS boundary, the leading behavior of these fields is given by:

η(x) = a0 +O(x) , β(x) = a1 −
1

3
a20 ln(x) +O(x) , a(x) = A0 −

1

6
a20x+O(x2) . (46)

In the IR, we use the results in equation (43) (up to O(ũ4)) as our shooting conditions (we have the freedom

of choosing the parameter b1, which is always less than zero). We can then extract the values of a0 and a1

at the AdS boundary for our solution. Note that the choice of B0 will determine the choice of A0. We

can choose to eliminate the constant A0 by appropriately rescaling our coordinate z̃. In particular, if we

12



solve our equations with B0 = 0, we can extract the constant A0, and then simply perform the following

transformation to eliminate it from our metric:

z̃ → eA0 z̃ . (47)

Finally, as indicated in ref. [21], there are constants of the motion regardless of the choice of b1 (and

subsequently, the choice of (a0, a1)), given by:

− b1aλ0 ≈ 0.1493 ,

√
6a1
a20

+

√
8

3
ln(a0) ≈ −1.4696 . (48)

These constants, for a given flow, set the size and position of the domain wall separating the two AdS5

regions of the geometry.

It is instructive to look at the results to get a sense of what a real domain wall looks like in these

solutions. We plot (in the original radial coordinate r) the metric function A(r)/r, and also −A(r)′ in

figure 2. The wall noticeably gets thinner as it moves toward the UV. While it would be instructive to

-5 0 5 r

1.01

1.02

1.03

1.04

1.05

A HrL
r

(a)

-5 0 5 r
0.002
0.004
0.006
0.008
0.010
0.012
0.014

-
d
d r

A HrL
r

(b)

Figure 2: Samples of the domain wall behaviour. The lowest (blue solid) curve corresponds to b1 → −3), next lowest
(green dot–dashed) curve is with b1 = −2, and the top (red dashed curve) is with b1 = −1. The UV is to the right,
and the mass increases with increasing (toward the positive) b1.

track the wall toward the UV for very large values of the mass, it becomes harder to control the numerical

accuracy in that regime.

3.3 The Holographic Entanglement Entropy

3.3.1 The Box

The metric we need is given by:

ds21,4 =
R2

z2
e2(a(z̃)−a(0))

(
−dt2 + dx21 + dx22 + dx23

)
+
R2

z2
dz2 . (49)
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It is important to notice that we are working here in a rescaled z coordinate. z̃ is the coordinate of the

previous section, with z̃ = z exp(a(0))/R. This will mean that the mass of the chiral multiplet (controlled

by the scalar χ; see equation (41)) will now not be set by a0, but by ea(0)a0.

We consider a strip of infinite extent in the (x2, x3) directions and finite extent in the x1 direction.

We take as coordinates and ansatz for our surface embedding:

ξ1 = x1 , ξ2 = x2 , ξ3 = x3 , z ≡ z(x1) . (50)

The area of the surface is then given by:

Area = R3L2

∫ `/2

−`/2
dx1

e3(a(z̃)−a(0))

z3

(
1 + e−2(a(z̃)−a(0))z′(x1)2

)1/2
. (51)

Since there is no explicit dependence on the coordinate x1, a constant of the “motion” is:

P = L − z′(x1)
∂L

∂z′(x1)
=

e3(a(z̃)−a(0))

z(x1)3
√

1 + e−2(a(z̃)−a(0))z′(x1)2)
. (52)

We can evaluate this constant at the turning point x1 = 0 (with corresponding value z(0) = z∗) and rewrite

our area integral in terms of z:

Area = 2R3L2

∫ z∗

ε

dz
e2(a(z̃)−a(0))

z3
√

1− e−6(a(z̃)−a∗) z6z6∗
, (53)

where we have defined our UV cutoff ε as z(±`/2) = ε. Given the solution for the background, this expression

for the area can be simply integrated numerically. Furthermore, we can write z∗ in terms of ` as:

`

2
=

∫ z∗

ε

dz
e−(a(z̃)−a(0))√
e6(a(z̃)−a∗)

z6∗
z6 − 1

. (54)

For the case of pure AdS (which simply corresponds to taking a(z̃) = a∗ = a(0) in our equations), equa-

tion (53) has a single divergent term near the AdS boundary proportional to ε−2. For the flow geometry,

the non–trivial behavior of a(z̃) produces a new divergence in addition to the pure AdS one. Expanding the

exponential in the numerator, we find that near the AdS boundary, the divergent terms produced by the

integral are:

AreaUV = 2R3L2

∫
ε

1− a20
3R2 e

2a(0)z2

z3
= R3L2

(
1

ε2
+

2a20
3R2

e2a(0) ln
( ε
R

))
. (55)

The ln(ε) divergence is new. Such new divergence terms associated with the function a(z) are expected in

d ≥ 4.

We will only be interested in the finite contribution (beyond this UV divergent term) to the entan-

glement entropy, and we will denote this finite contribution by s such that:

4G
(5)
N S = Area =

(
R3L2

ε2
+

2a20RL
2

3
e2a(0) ln

( ε
R

)
+ 2RL2s

)
. (56)
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Figure 3: Blue solid curve is pure AdS5 result (corresponds to b1 → −∞), green dot–dashed curve is with b1 = −2,
and the red dashed curve is with b1 = −1

To perform these integrals numerically, we find that using ε = 10−5 and using the coordinate

y = z3 gives reliable results. We present some results in figure 3. The key result is that we find that the

entanglement entropy for the flow geometry asymptotes (for large `/R) to a constant value not equal to zero,

as was predicted by the sharp domain wall analysis. The value of the asymptotic constant, which we denote

by s∞, can be understood as stemming from the parts of the surface in the interpolating region from one

AdS geometry to the other. With our normalization of s as defined in equation (56), the interpolating part

of the surface contributes as:

s∞ = R2

∫ z∗

ε

dz
e2(a(z̃)−a0)

z3
. (57)

Taking z∗ → ∞, we find that the finite contribution of this area matches extremely well the finite value

for the entanglement entropy curves in figure 3. We present the dependence of s∞ on the multiplet mass

in figure 4. We see that for large mass, the value increases as predicted, while for small mass, it actually

decreases. We can understand this behavior as follows. The sharp domain wall analysis of the previous

section applies when the mass is large and correspondingly the domain wall’s thickness is small. For small

mass, the wall is fat, and so we can expect deviations (in this case, very large) from our predictions. As the

mass increases, the sharp domain wall approximation is approached, and our results fit better. Although we

0.2 0.4 0.6 0.8 1.0 1.2e
a H0La00.00

0.05

0.10

0.15

0.20

s
¥

Figure 4: Value of the asymptotic (`/R → ∞) entanglement entropy for changing multiplet mass. Recall that the
multiplet mass is proportional to ea(0)a0.
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have a clear understanding of this asymptotic behavior from our sharp domain wall analysis, where we argued

it mixes the UV and IR physics around the domain wall, in this example we can completely characterize the

behaviour in terms of the chiral multiplet mass. We define a function Ω as follows:

Ω = Ω0

(
ea(0)a0

)−1
, (58)

where Ω0 ≈ 0.6592R and is a constant which we found from fitting to the data. Using this function, we

write the entanglement entropy as:

4G
(5)
N S = Area =

(
R3L2

ε2
+

2a20RL
2

3
e2a(0) ln

( ε
Ω

)
+ 2RL2sadj

)
, (59)

where sadj now asymptotes to zero. We show this in figure 5. A nice feature of the function Ω is that it

captures the IR/UV domain wall physics in terms of a single length scale which naturally normalizes the

new UV divergence. This length scale emerges naturally from our holographic calculation, and it would

be difficult (yet worthwhile) to independently calculate it in the dual field theory. Furthermore the non–

UV divergent parts of the entropy now asymptotes to zero for large `, as appropriate for the entanglement

entropy for the box region in this limit since there will only be the region A remaining.

5 10 15 20 25
l

R

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

sadj

(a)

4.0 4.2 4.4 4.6 4.8 5.0
l

R
-0.010

-0.009

-0.008

-0.007

-0.006

-0.005
sadj

(b)

Figure 5: The adjusted entanglement entropy. Blue solid curve is pure AdS5 result (corresponds to b1 → −∞), green
dot–dashed curve is with b1 = −2, and the red dashed curve is with b1 = −1. The curves do not perfectly overlap
when inspected at a higher magnification.

3.3.2 The Ball

The metric we need is given by:

ds21,4 =
R2

z2
e2(a(z)−a(0))

(
−dt2 + dr2 + r2dΩ2

2

)
+
R2

z2
dz2 . (60)

We consider a three dimensional ball with radius `, so take as coordinates and ansatz for our surface

embedding:

ξ1 = r , ξ2 = θ , ξ3 = φ , z ≡ z(r) . (61)
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The area of the surface is then given by:

Area = 4πR3

∫ `

0

dr
r2e3(a(z̃)−a(0))

z(r)3

(
1 + e−2(a(z̃)−a(0))z′(r)2

)1/2
. (62)

Since there is an explicit r dependence, there is no conserved quantity (as was the case for the strip), so the

extremal area must be found by solving the equations of motion derived from the above action:

z′′(r) +
2e−2(a(z̃)−a(0))

r
z′(r)3 +

(
3

z(r)
− 8e2a(0)z(r)a′(z̃)

)
z′(r)2

+
2

r
z′(r) +

3e2(a(z̃)−a(0))(1− 2e2a(0)z(r)2a′(z̃))

z(r)
= 0 , (63)

with the boundary conditions:

z(0) = z∗ , z(`) = ε . (64)

In order to study the UV divergences of equation (62), it is convenient to define a new coordinate:

y(r) =
1

`

√
`2 + ε2 − r2 . (65)

The reason for this particular choice is that, in the pure AdS geometry, the embedding z(r) has a solution

given by z(r) = `y(r). In terms of y, the embedding has asymptotic solution given by:

z(y) = `y + z2y
3 − `3

6R2
e2a(0)a20y

3 ln(y) + · · · , (66)

where z2 is a constant chosen such that the solution satisfies z′(y = 1) = 0.

Let us define as before a quantity s as follows:

Area

4π
= R3

(
`2

2ε2
+

1

2
ln
( ε
`

)
+

`2

3R2
e2a(0)a20 ln

( ε
R

)
+ s .

)
(67)

Our numerical results for s are shown in figure 6. As expected from our sharp domain wall analysis, the

asymptotic behavior is dominated by an `2 behavior. Furthermore, upon subtraction of this behavior, we

find our expected ln(`) behavior (see figure 7). In fact, the large ` behavior of the adjusted entanglement

entropy is very well approximated by the expression:

lim
`→∞

s ≈ a
(
`

R

)2

+ b ln

(
`

R

)
+ c . (68)

Comparing to equation (18), the coefficients a and c should be interpreted as being a complicated function

of the domain wall data (and hence the mass term), whereas the coefficient b should simply be related to the

central charge of the IR theory. We show the dependence of a, b, and c on the mass in figure 8. First, we

see that the coefficient of the area term a decreases with increasing mass, which deviates from our domain

wall analysis. However, our mass range displayed here is actually in the same region where the analogous

results for the box were decreasing. This is all traceable (as it was then) to being far from the thin domain
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Figure 6: Results for the ball with radius `. Blue solid curve is for −b0 = 3, green dot–dashed curve is for −b0 = 2,
and red dashed curve is for −b0 = 1.
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Figure 7: Entanglement entropy without the leading `2 contribution. Blue solid curve is for −b0 = 3, green dot–
dashed curve is for −b0 = 2, and red dashed curve is for −b0 = 1.

wall regime. In fact it is apparent that our results are just about to turn around, as happened for the box.

We may ask whether we can capture the behavior of this coefficient with a function Ω, defined in a similar

way to that which we did for the box (see equation (58) and discussion below it). This turns out to be the

case, and we compare the function Ω for the strip and for the ball in figure 9 ( where we again let the data

determine the value Ω0) and we find that the results are remarkably close, suggesting that indeed this is a

physical length scale in the theory. Since the only other scale in the theory is the multiplet mass, we expect

that Ω is set by the inverse of the value of this mass after it has renormalized under RG flow to its value set

by the scale at the domain wall.

Finally, it is interesting to check whether the coefficient of the ln(`) term of the entanglement

entropy indeed matches our expectation that for large enough ` it should be equal to −R3
IR/2R

3 (compare

the definition of s in equation (67), and b in equation (68) and (18)). We present this check in figure 10.

Indeed, we find that our results are very close to the expected value, and in fact the results get better with

larger mass. It is not entirely unexpected that the results deviate somewhat for smaller mass. With smaller
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Figure 8: Values of the fit coefficients of equation (68).

masses, one needs to go to larger ` (and larger AdS radial position) to enter the IR AdS, and larger ` is

increasingly hard to explore numerically.

4 The Three Dimensional Holographic RG Flow

4.1 The Holographic Dual Gravity Background

We consider the 2+1 flow of ref. [25]. It is the analogue of the Leigh–Strassler flow we studied earlier. The

IR fixed point is the N = 2 fixed point studied in [29, 30]. Starting with an ansatz for the metric of the

form:

ds21,3 = e2A(r)
(
−dt2 + dx21 + dx22

)
+ dr2 , (69)
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3.

the flow equations are given by1:

A′(r) = − 1

R
W ,

ρ′(r) =
1

16R

(cosh(2χ) + 1) + ρ8 (cosh(2χ)− 3)

ρ
,

χ′(r) =
1

4R

(
ρ8 − 3

)
sinh(2χ)

ρ2
. (70)

To study the UV asymptotics, we define a coordinate z̃ via:

z̃ = e−r/R , (71)

1We use a different definition of the AdS radius R than the authors of ref. [25]. The reason for this is such that the asymptotic
behavior in terms of the coordinate r are the same for our previous analysis.
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and find that the fields have the following asymptotics:

A(z̃) = − ln(z̃)− z̃2

4

(
12a21 + a20

)
+O(z̃3) ,

χ(z̃) = z̃a0 − 6a1a0z̃
2 +O(z̃3) ,

α(z̃) = z̃a1 +

(
2a21 −

a20
4

)
z̃2 +O(z̃3) . (72)

In the IR, we define a coordinate ũ via:

ũ = eλr/R , (73)

where λ = 33/4
(√

17− 1
)
/4. The asymptotics of the field is given by:

A(ũ) =
2√

17− 1
ln(ũ) +B0 +O(ũ2) ,

χ(ũ) =
1

2
cosh−1(2) + b0ũ+O(ũ2) ,

α(ũ) =
1

8
ln (3) +

√
17− 1

8
√

3
b0ũ+O(ũ2) . (74)

Note that this gives that RIR = 2R/33/4.

4.2 The Entanglement Entropy

We follow a similar analysis as before for calculating the entanglement entropy and in light of our detailed

calculations presented for AdS5, we will be brief here. For the strip, we define a quantity s via:

4GNS = Area =

(
R2L

ε
+ 2RLs

)
, (75)

and we plot the result in figure 11(a). Similarly for the disc (of radius `), we define s via:

4GNS = Area = 2πR2

(
`

ε
+ s

)
, (76)

and we plot the result in figure 11(b). As expected, there is no new divergent term, and the entanglement

entropy has a non–zero coefficient associated with the area of the boundary for large `. Furthermore, fitting

the large ` behavior for the disc result to the functional form a`+b gives a result for b of approximately −0.79

which is close to the value of −R2
IR, the value we would have predicted in the IR AdS from the thin domain

wall analysis (see equation (21) and discussion below it). Using the strip data, we calculate the dependence

of the coefficient on the mass and present it in figure 12. We find that the dependence is linear in the mass

range explored. The linear behavior again suggests that we can interpret the coefficient in terms of the mass

of the multiplet. The slope is negative. We expect that we are somewhat away from the mass regime where

we connect with the thin domain wall analysis for physics controlled by the domain wall region. The regime

of larger mass ought to show that the coefficient increases towards positivity (see equations (22) and (30)).

It is currently too difficult to extract reliable numerical results in that regime however, and so we cannot

test this as we did for the case of one dimension higher.
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Figure 11: Results for the strip of width ` and the disc of radius `. Solid blue is the pure AdS4 result, green dot
dashed is in a background with −b0 = 0.01, and red dashed is in a background with −b0 = 0.001.
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Figure 12: The coefficient of ` for large `. The blue circles are the numerical results, while the red dashed curve is
the linear best fit.

5 Conclusions

We were able to uncover how the holographic entanglement entropy formula encodes a number of field theory

features along an RG flow using the key feature of an holographic RG flow, its domain wall. In the thin

wall limit where we study an idealized flow between two AdS regions (and hence a flow between fixed point

theories) we were able to extract, in various dimensions, rather pleasing formulae showing how the field

theory data appear separated out according to the various natural scales in the problem. Using two known

RG flows between fixed points, we were able to test our formulae in real examples and found that where

we could, several of the features we expected to be robust were confirmed. This included the form of the

growth of the entropy upon approach to the IR, which we found defined a new area law supplementing the

ones known for the UV behaviour. We were also able to see (in the thin domain wall limit) how the entropy

naturally encodes (in its asymptotics) the (renormalized) length scale corresponding to the presence of the

relevant operator that was switched on.
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Our overall goal is to understand the entanglement entropy in this holographic setting well enough

to use it as another diagnostic tool for studying the properties of strongly coupled field theories, and so

we consider this study of RG flow to be a useful step along the way. Having analytically characterized, as

we have done, the kinds of behaviour that can appear (in various dimensions), we expect that holographic

studies of the entanglement entropy in more complicated theories will be aided by our results. Many such

examples will, by their very nature, be only accessible with numerical approaches, and so analyzing of the

results for the entropy may be subtle. This is where we expect a lot of the intuition here to help bring

things sharply into focus, since such features as the entropy’s approach to the end of the flow have now been

unpacked in terms of the general features of holographic flow geometries.
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