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Error-corrected quantum annealing
with hundreds of qubits

Kristen L. Pudenz'23, Tameem Albash?4 & Daniel A. Lidar"245>

Quantum information processing offers dramatic speedups, yet is susceptible to
decoherence, whereby quantum superpositions decay into mutually exclusive classical
alternatives, thus robbing quantum computers of their power. This makes the development of
quantum error correction an essential aspect of quantum computing. So far, little is known
about protection against decoherence for quantum annealing, a computational paradigm
aiming to exploit ground-state quantum dynamics to solve optimization problems more
rapidly than is possible classically. Here we develop error correction for quantum annealing
and experimentally demonstrate it using antiferromagnetic chains with up to 344
superconducting flux qubits in processors that have recently been shown to physically
implement programmable quantum annealing. We demonstrate a substantial improvement
over the performance of the processors in the absence of error correction. These results pave
the way towards large-scale noise-protected adiabatic quantum optimization devices,
although a threshold theorem such as has been established in the circuit model of quantum
computing remains elusive.
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ombinatorial optimization problems are of great interest

in both complexity theory and practical applications,

and are also notoriously difficult to solve!. Quantum
computing harbours the promise of dramatic speedups over its
classical counterpart?, yet it cannot function on a large scale
without error correction’. Quantum annealing, a form of
quantum computing tailored to optimization that can be more
efficient than classical optimization*®, also requires error
correction. Quantum annealing is an alternative to classical
simulated annealing, an approach to optimization based on the
observation that the cost function of an optimization problem can
be viewed as the energy of a physical system, and that energy
barriers can be crossed by thermal hopping’. However, to escape
local minima it can be advantageous to explore low-energy
configurations quantum mechanically by exploiting super-
positions and tunnelling. Quantum annealing is based on this
idea and was originally introduced as an algorithm designed to
solve optimization groblems such as minimizing multi-
dimensional functions® or finding the ground states of classical
spin Hamiltonians®. Quantum annealing is closely related to
adiabatic quantum computation!®!!, a paradigm that is com-
putationally universal (hence, not limited to optimization) and is
equivalent in computational power to the standard circuit model
of quantum computation up to polynomial overhead!>!3. The
physical realization of the quantum annealing algorithm!4~17 is
called a programmable quantum annealer (PQA).

Numerous experiments have demonstrated the utility of
quantum error correction in gate-model quantum computing
with up to nine qubits using, for example, NMR!®1, trapped
ions?®?1, optical systems?>?>> and superconducting circuits*4,
However, such demonstrations require far more control than is
available in PQA. Similarly, most error correction or suppression
methods developed for adiabatic quantum computing®>~28
beyond a classical repetition code!® require operations that are
not included in the PQA repertoire. Furthermore, an accuracy-
threshold theorem, such as exists for circuit model quantum
computing?~3L, is still lacking for adiabatic quantum computing.
Thus, it remains an open theoretical question whether a noisy
PQA can accurately simulate an ideal PQA for arbitrary large
optimization problems.

In spite of these obstructions, here we develop and demonstrate
an error correction method for PQA. This method can improve
the success probability of quantum annealing, while full-fledged
fault tolerance remains an open problem. We provide an
experimental demonstration using up to 344 superconducting
flux qubits in D-Wave processors'”>>2, which have recently been
shown to physically implement PQA3337. At this time, there is
no conclusive evidence that the D-Wave processors can
outperform the best classical algorithms, and the question
remains the subject of considerable debate’®3°. The qubit
connectivity graph of these processors is depicted in Fig. la.

Results

Quantum annealing and computational errors. Many hard and
important optimization problems can be encoded into the lowest
energy configuration (ground state) of an Ising Hamiltonian

N N
Higing = Zhiﬁf + Z]ijafgf ) (1)
p

i<j

where each ¢f= 11 is a classical binary variable, and the
dimensionless local fields h: = {h;} and couplings J: = {J;;} are the
‘programmable’ parameters that specify the problem®®4!, In PQA
the solution of the optimization problem is found by replacing the
classical variables by N quantum binary variables (qubits) that
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Figure 1 | Unit cell and encoded graph. (a) Schematic of one of the 64 unit
cells of the DW2 processor; unit cells are arranged in an 8 x 8 array
forming a ‘Chimera’ graph between qubits (see Methods). Each circle
represents a physical qubit and each line a programmable Ising coupling
o7a7. Lines on the right (left) couple to the corresponding qubits in the
neighbouring unit cell to the right (above). (b) Two ‘logical qubits’ (i, red
and j, blue) embedded within a single unit cell. Qubits labelled 1-3 are the
‘problem qubits’, the opposing qubit of the same colour labelled P is the
‘penalty qubit’. Problem qubits couple via the black lines with tunable
strength o both inter- and intraunit cell. Light blue lines of magnitude f are
ferromagnetic couplings between the problem qubits and their penalty
qubit. (¢) Encoded processor graph obtained from the Chimera graph by
replacing each logical qubit by a circle. This is a non-planar graph (see
Methods for a proof) with couplings of strength 3a. Green circles represent
complete logical qubits. Orange circles represent logical qubits lacking their
penalty qubit (see Methods). Red lines are groups of couplers that cannot
all be simultaneously activated.

evolve subject to the time-dependent Hamiltonian

te[0,4]. (2)

Here Hy= Zfil o7 is a transverse-field Hamiltonian, ¢7 and
of denote the spin 1/2 Pauli operators whose eigenstates
are, respectively, [0>, 1> and |+ > =(|0) +|1))/v/2, with
eigenvalues +1. A(f) and B(f) are time-dependent functions
(with dimensions of energy) satisfying A(t) = B(0) =0, and tis
the annealing time. A physical PQA always operates in the
presence of a thermal environment at temperature 7. Provided
A(0)»kpT, the PQA is initialized in the ground state of Hy,
namely, the uniform superposition state ([0---0)> + - +
[1---1))/ V2N, Provided B(t) > kgT, the final state at the end of
the annealing process is stable against thermal excitations when it
is measured. If the evolution is adiabatic, that is, if H(¢) is a
smooth function of time and if the gap A: = minte[o’t/ ,]el(t) —€o(t)

H(t) = A(t)Hx + B(t)Higing,

between the first excited-state energy €,(f) and the ground-state
energy €o(t) is sufficiently large compared with both 1/t and T,
then the adiabatic approximation for open systems*?~4>
guarantees that the desired ground state of Hygng will be
reached with high fidelity at #. However, hard problems are
characterized by gaps that close super¥ol¥nomially or even
exponentially with increasing problem size'%!1:46, If the gap is too
small, then both non-adiabatic transitions and thermal
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excitations can result in computational errors, manifested in the
appearance of excited states at f. While the non-adiabatic
transition rate can in principle be suppressed to an arbitrarily
high degree by enforcing a smoothness condition on the
annealing functions A(f) and B(t)¥, thermal excitations will
cause errors at any non-zero temperature. In addition, even if A is
large enough, inaccuracies in the implementation of Hyg,g may
result in the evolution ending up in the ‘wrong’ ground state.
Overcoming such errors requires error correction.

Quantum annealing correction. We devise a strategy we call
‘quantum annealing correction’ (QAC), comprising the intro-
duction of an energy penalty (EP) along with encoding and error
correction. Our main tool is the ability to independently control
pairwise Ising interactions, which can be viewed as the generators
of the bit-flip stabilizer code®8. We first encode Higing, replacing
each ¢¢ term by its encoded counterpart 67 = > ), o; and each
oia? by aiaf =, 0 0, where the subindices / refer to the
prO{)lem qubits as depicted in Fig. 1b. After these replacements
we obtain an encoded Ising Hamiltonian

N N
Higing = thﬂf + Z]ijfffo'f7 3)
=

i<j

where N is the number of encoded qubits.

This encoding allows for protection against bit-flip errors in
two ways. First, the overall problem energy scale is increased by a
factor of n, where n=3 in our implementation on the D-Wave
processors. Note that since we cannot also encode Hy (this would
require n-body interactions), it does not directly follow that the
gap energy scale also increases; we later present numerical
evidence that this is the case, so that thermal excitations will be
suppressed. Second, the excited-state spectrum has been labelled
in a manner that can be decoded by performing a post-read-out
majority vote on each set of n problem qubits, thereby error-
correcting non-code states into code states to recover some of the
excited-state population. The (n, 1) repetition code has minimum
Hamming distance n, that is, a non-code state with more than
| n/2 | bit-flip errors will be incorrectly decoded; we call such
states ‘undecodable’, while ‘decodable states’ are those excited
states that are decoded via majority vote to the correct code state
(see Methods for details of the code and non-code states).

To generate additional protection, we next introduce a
ferromagnetic penalty term

N

Hp = — Z (O'IZ‘ +.‘.+Ufn)0'?p, (4)

i=1

the sum of stabilizer generators of the n + 1 qubit repetition code,
which together detect and energetically penalize?® all bit-flip
errors except the full encoded qubit flip. The role of Hp can also
be understood as to lock the problem qubits into agreement with
the penalty qubit, reducing the probability of excitations from the
code space into non-code states; see Fig. 1b for the D-Wave
processor implementation of this penalty. The encoded graph
thus obtained in our experimental implementation is depicted in
Fig. 1c.

Including the penalty term, the total encoded Hamiltonian we
implement is

H(t) = A(t)HX +B(t)HIsing,P(a7 ﬂ)v (5)

where Higingp (¢, ) := ¢Higing + fHp, and the two controllable
parameters o and f are the ‘problem scale’ and ‘penalty scale’,
respectively, which we can tune between 0 and 1 in our
experiments and optimize. Note that our scheme, as embodied
in equation (5), implements QAC: Hp energetically penalizes

every error E it does not commute with, for example, every single-
qubit error E€ U(2) such that E¢c?.

To illustrate this, consider the case where E=¢". Early in the
quantum annealing evolution when the transverse-field Hamilto-
nian dominates, such an error corresponds to a phase-flip error,
while late in the evolution when the Ising Hamiltonian dominates
it is a bit-flip error. Denoting the instantaneous ground state
of the total encoded Hamiltonian minus the penalty term,
H(t) = A(t)Hx + B(t)Hsing, by [/(t)) and the ‘erred’ state by
|¢(t)) = E[y(t)) (either another ground state or an excited state

of H(t)), the instantaneous energy difference between the erred
state and the ground state is (P(t)[H(t)|P(t)) — ((t)]|
H(E)[(1)) = A() +26B(1), where 2BB(t) = (¢(1)| B (1))
— (W(O)|BHp[Y () = 0 and A(t) = ($(t)[H(D)|(1)) — (b(t)]
H(t)|(t)) > 0. Thus, the EP will suppress thermal excitations
from the ground state to the erred state except early in the

evolution when B(t) = 0. In contrast, an error that commutes with
the penalty term, such as any pure phase-flip error ¢7, is not
/)

penalized.

Benchmarking using antiferromagnetic chains. Having speci-
fied the general scheme, which in particular is applicable to any
problem that is embeddable on the encoded graph shown in
Fig. 1c, we now focus on antiferromagnetic chains. In this case,
the classical ground states at t =t are simply the doubly degen-
erate states of nearest-neighbour spins pointing in opposite
directions. This allows us to benchmark our QAC strategy while
focusing on the role of the controllable parameters, instead of the
complications associated with the ground states of frustrated Ising
models®>>*°. Moreover, chains are dominated by domain wall
errors'’, which as we explain below are a particularly challenging
scenario for our QAC strategy.

As a reference problem, we implemented an N-qubit
antiferromagnetic ~ chain  with  Higng(®) = ocZ?Sl o507, .
We call this problem ‘unprotected’ (U) since it involves no
encoding or penalty. We can augment the U strategy by
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Figure 2 | Unprotected chains and the classical decoding strategy. Shown
is a comparison of the experimental U and C results for chains of length N,
along with the binomial theory prediction 1— (1 — p)4, for problem scale

o =0.3. The U series is the input for the binomial theory. Here and in all
subsequent figures error bars are calculated over the set of embeddings
and express the s.e.m. 6/V/S, where 02:%2,; (x; —x)? is the sample
variance and S=5,000 is the number of samples.
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implementing four unpenalized parallel N-qubit chains:
Higing (o) =0t Z;;l Zfi{lofjafj +1- We can decode the parallel
chains in two ways. The first, which is our best classical
alternative approach (C), treats the parallel chains as independent
runs. If the chains are independent, this increases the success
probability from p for the U strategy to 1 — (1 —p)* for the C
strategy. As shown in Fig. 2, this prediction is in good overall
agreement with our experimental results, with small deviations
(probably due to crosstalk) appearing only for the longest chains.
The binomial theory always gives an upper bound on the
experimental results, suggesting that deviations from theory may
be attributable to correlated errors in the experimental device.
The second decoding strategy is to treat each triple of bits
{i; }j:1 as an encoded bit i, which is decoded via majority vote.
We call this the ‘no penalty’ (NP) strategy since it is the
QAC strategy with f=0. As a third reference problem, we
implemented a chain of N-encoded qubits with an EP:
Higing, p(2, f) = o Zf\;l o%0?, , + fHp. When we add majority
vote decoding to the EP strategy we have our complete QAC
strategy. Comparing the probability of finding the ground state in
the U, C, NP, EP and QAC cases allows us to isolate the effects
of the various components of the error correction strategy.
As antiferromagnetic chains have two degenerate ground states,
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below we consider the ground state for any given experimentally
measured state to be that with which the majority of the decoded
qubits align.

Experimental success probabilities. The performance of the
different strategies is shown in Fig. 3. Our key finding is the high
success probability of the complete QAC strategy for o =1
(Fig. 3a), improving significantly over the four other strategies as
the chain length increases, and resulting in a fidelity > 90% for all
chain lengths. The relative improvement is highest for low values
of «, as seen in Fig. 3d. The C strategy outperforms the QAC
strategy for sufficiently small chain lengths, but its performance
drops quickly for large chain lengths. Furthermore, the crossover
occurs at smaller chain lengths as the problem scale o is
decreased. The NP strategy is competitive with QAC for relatively
short chains but its performance also drops rapidly. The EP
probability is initially intermediate between the U and (C, NP)
cases, but always catches up with the (C, NP) data for sufficiently
long chains and overtakes both for sufficiently small o. This
shows that the EP strategy can be better than the purely classical
strategies but by itself is insufficient, and it must be supplemented
by decoding as in the complete QAC strategy.
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Figure 3 | Success probabilities of the different strategies. Panels a-c show the results for antiferromagnetic chains as a function of chain length for « =1,
0.6 and 0.3, respectively. At the largest chain lengths, the QAC strategy gives the largest success probability for all problem energy scales ¢, showing
significant improvements over all other strategies studied. The solid blue lines in the U case are best fits to 1/(1+ gN?2) (Lorentzian), yielding
g=194x10"% 531x 104 3.41x 103 for x =1, 0.6 and 0.3, respectively. This rules out a simple classical thermalization process, which would predict
an exponential decay with N (see Supplementary Equation (2) in Supplementary Note 2). Panel d compares the U and QAC strategies at N=N =86 and
2€{0.1,0.2, ..., 1.0}. Chains shown in a depict the U (top), C (middle) and {NP, EP, QAC} (bottom) cases. In the bottom case, physical qubits of the same

colour form an encoded qubit.
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Since o sets the overall problem energy scale, it is inversely
related to the effective noise strength. This is clearly visible in
Fig. 3a-d (see also Fig. 5), where the overall success probability
improves significantly over a range of o values. The unprotected
chains are reasonably well fit by a Lorentzian, whereas a
classical model of independent errors (see Supplementary
Note 2) fails to describe the data as it predicts an exponential
dependence on N. Additional details, including from experiments
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t,

on the D-Wave One ‘Rainier’ processor are given in
Supplementary Note 1. We turn next to an analysis and
explanation of our results.

Optimizing the penalty scale . To obtain the performance of
the EP and QAC strategies shown in Fig. 3, we optimized
[ separately for each strategy and for each setting of o and N.

V1 1 tn
Degeneracy: x6 x12 x2
Ising gap: A =4p A =20+ 2f A =6u
C 4
3 Correctly
decoded?
g 2 Yes
Yes
1
No
0

0 02 04 06 08 1
B

Figure 4 | Effect of varying the penalty strength . Panel a shows the numerically calculated gap to the lowest relevant excited state for two
antiferromagnetically coupled encoded qubits for o= 0.3 and different values of . As [ is increased, the minimum gap grows and moves to earlier in
the evolution. Inset: undecoded (decoded) ground-state probability Pgs (Ps), where we observe a drop in the success probability beginning at
approximately f=0.6. Panel b shows three configurations of two antiferromagnetically coupled encoded qubits. Physical qubits denoted by heavy
arrows point in the wrong direction. In the left configuration both encoded qubits have a bit-flip error, in the middle configuration only one encoded
qubit has a single bit-flip error and in the right configuration one encoded qubit is completely flipped. The corresponding degeneracies and gaps (A))
from the final ground state are indicated, and the gaps plotted in panel ¢. The completely flipped (and undecodable) encoded qubit becomes the
relevant excited energy state for > 0.6, which explains the drop in success probability observed in the simulations in panel a. Therefore, the optimal
S balances the two key effects of increasing the gap and maintaining a majority of decodable states at low energies.
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Figure 5 | Experimental optimization of the penalty strength . The top (bottom) row shows colour density plots of the experimental success probability
of the EP (QAC) strategy as a function of f and Ne{2, 3, ..., 86}, at a=0.3 (left), 0.6 (middle) and 1 (right). The optimal f values are indicated by

the white dots. The optimal f values for the EP strategy are generally larger than that of the QAC strategy since the optimal 8 serves different purposes
in these two cases. Note that at =0, where the QAC strategy becomes the NP strategy, we observe markedly lower success probability than at finite
B, showing that a finite yet small 8 for large chain lengths is crucial to the QAC strategy. In contrast, the EP strategy performs poorly at very small f as it
does not recover probability lost to decodable states and requires a larger optimal f to increase the ground-state energy gap and reduce the error rate.
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Figure 6 | Hamming distance histograms. Observed errors in encoded 86 qubit antiferromagnetic chains, at « =1 and the near-optimal f=0.2.

Panel a is a histogram of Hamming distances from the nearest of the two degenerate ground states, measured in terms of physical qubits. The periodicity
of four observed for Hamming distance >20 reflects the flipping of an entire encoded qubit. Inset: Hamming distance in terms of encoded qubits.

The peaks at Hamming distance zero are cut off and extend to 63.6% (88.3%) for the physical (encoded) case. Panel b is a histogram of the errors
as a function of encoded qubit position (colour scale) within the chain. Errors on encoded problem qubits are at Hamming distance 1, 2 or 3. Flipped
penalty qubits are shown in the inset. The majority of errors are the flipping of entire encoded qubits (the flipped penalty qubits occur in conjunction
with the flipping of all three problem qubits), corresponding to domain walls. Furthermore, errors occur predominantly at the chain boundaries, since
errors cost half the energy there. The mirror symmetry is due to averaging over the two equivalent chain directions.
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Figure 7 | Decodability analysis. The fraction of decodable states out of all
states (colour scale) observed at a given Hamming distance from the
nearest degenerate ground state (measured in physical qubits), and given
energy above the ground state (in units of J;=1), for N=86 and a.=1.
Decodable states are observed predominantly at low Hamming distance
and not necessarily at the lowest energy.

To understand the role of f§ consider first how increasing f affects
the size and position of the gap A. The excitations relevant to our
error correction procedure are to the second excited state and
above, since the ground state becomes degenerate at ¢ In Fig. 4a
we show that the relevant gap grows with increasing f, as desired.
The gap position also shifts to the left, which is advantageous
since it leaves less time for thermal excitations to act while the
transverse field dominates. However, the role of f§ is more subtle
than would be suggested by considering only the gap. When
f<<o the penalty has no effect, and when f>o the penalty
dominates the problem scale and the chains effectively comprise
decoupled encoded qubits. Thus, there should be an optimal f for

6

each (N, o) pair, which we denote as Bope. Without decoding we
expect fop~ o based on the argument above, which is confirmed
in Fig. 5 (upper panels). Note that when § = 0.1, the penalty is too
small to be beneficial, and hence the poor performance for that
value in the EP case.

In the QAC case another effect occurs: the spectrum is
reordered so that undecodable states become lower in energy than
decodable states. This is explained in Fig. 4b. Consider the three
configurations shown. While the left and middle configurations
are decodable, the right-side configuration is not. For sufficiently
large o the undecodable state is always the highest of the three
indicated excited states. The graph at the bottom of panel b shows
the Ising gap as a function of f§ for & =0.3. While for sufficiently
small 8 such that 4/, 2o + 2§ < 60 both decodable states are lower
in energy than the undecodable state, the undecodable state
becomes the first excited state for sufficiently large . This
adversely affects the success probability after decoding, as is
verified numerically in the inset of panel a, which shows the
results of an adiabatic master equation** calculation for the same
problem, yielding the undecoded ground-state probability Pgg
and the decoded ground-state probability Ps (for model details
and parameters, see the Methods section). While for f<0.6
decoding helps, this is no longer true when for >0.6 the
undecodable state becomes the first relevant excited state.
Consequently, we again expect there to be an optimal value of
p for the QAC strategy that differs from S, for EP. These
expectations are borne out in our experiments; Fig. 5 (lower
panels) shows that f,, is significantly lower than in the EP case,
which differs only via the absence of the decoding step. The
decrease in f,, with increasing o and chain length can be
understood in terms of domain wall errors (see below), which
tend to flip entire encoded qubits, thus resulting in a growing
number of undecodable errors. However, the benefit of even a
small non-zero value for B, at large chain lengths is critical in
improving the outcome of the QAC strategy over the NP
strategy as observed in Figs 3 and 5, and can be viewed as indirect
evidence of quantum effects. For additional insight into the
roles of the penalty qubits o and f see Supplementary Notes 3
and 4.
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Figure 8 | Connectivity graph of DW2. The connectivity graph of the DW2 ‘Vesuvius'

processor consists of 8 x 8 unit cells of eight qubits (denoted

by circles), connected by programmable inductive couplers (lines). The 503 green (red) circles denote functional (inactive) qubits. Most qubits connect to
six other qubits. In the ideal case, where all qubits are functional and all couplers are present, one obtains the non-planar ‘Chimera’ connectivity graph.

Error mechanisms. Solving for the ground state of an anti-
ferromagnetic Ising chain is an ‘easy’ problem, so why do we
observe decreasing success probabilities? As alluded to earlier,
domain walls are the dominant form of errors for anti-
ferromagnetic chains, and we show next how they account for the
shrinking success probability. We analyse the errors on the pro-
blem versus the penalty qubits and their distribution along the
chain. Figure 6a is a histogram of the observed decoded states at a
given Hamming distance d from the ground state of the N =86
chains. The large peak near d=0 shows that most states are
either correctly decoded or have just a few flipped bits. The quasi-
periodic structure seen emerging at d>20 can be understood in
terms of domain walls. The period is four, the number of physical
qubits per encoded qubit, so this periodicity reflects the flipping

of an integer multiple of encoded qubits, as in Fig. 4b. Once an
entire encoded qubit has flipped and violates the anti-
ferromagnetic coupling to, say, its left (thus creating a kink), it
becomes energetically preferable for the nearest neighbour-
encoded qubit to its right to flip as well, setting off a cascade of
encoded qubit flips all the way to the end of the chain. The inset is
the encoded Hamming distance histogram, which looks like a
condensed version of the physical Hamming distance histogram
because it is dominated by these domain wall dynamics.

Rather than considering the entire final state, Fig. 6b integrates
the data in Fig. 6a and displays the observed occurrence rates of
the various classes of errors per encoded qubit in N =86 chains.
The histograms for one, two and three problem qubits flipping
in each location are shown separately. The states shown at
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Hamming distance 1 in the histogram are decodable, and together
represent the contribution of the majority vote decoding to the
overall success probability (note that some errors have already
been suppressed via the EP term, as shown in the EP series in
Fig. 3 and discussed earlier in the text). Flipped penalty qubits are
shown in the inset and are essentially perfectly correlated with
d =3 errors, indicating that a penalty qubit flip will nearly always
occur in conjunction with all problem qubits flipping as well.
Thus, the penalty qubits function to lock the problem qubits into
agreement, as they should (further analysis of the role of the
penalty qubit in error suppression is presented in Supplementary
Note 3). The overwhelming majority of errors are one or more
domain walls between encoded qubits. The domains occur with
higher probability the closer they are to the ends of the chain,
since kink creation costs half the energy at the chain boundaries.
The same low barrier to flipping a qubit at the chain ends also
explains the large peaks at d=1.

Our majority vote-decoding strategy correctly decodes errors
with d=1, incorrectly decodes the much less frequent d=2
errors and is oblivious to the dominant d =3 domain wall errors,
which present as logical errors. Therefore, the preponderance of
domain wall errors at large N is largely responsible for the drop
seen in the QAC data in Fig. 3. The two-qubit problem analysed
in Fig. 4a,b suggests that logical errors can dominate the low-
energy spectrum. We observe this phenomenon in Fig. 7, which
shows that decodable and undecodable states separate cleanly by
Hamming distance but not by energy, with many high-energy
states being decodable states. In this sense the problem of chains
we are studying here is in fact unfavourable for our QAC scheme,

Annealing schedules (GHz)

0 L L M
0 0.2 0.4 0.6 0.8 1
t/t;

Figure 9 | DW2 annealing schedule. The functions A and B are the ones
appearing in equations (2) and (5). The solid horizontal black line is the
operating temperature of 17 mK.

and we might expect better performance for computationally
hard problems involving frustration.

Figure 7 lends itself to another interesting interpretation.
Quantum annealing is normally understood as an optimization
scheme that succeeds by evolving in the ground state, but how
much does the energy of the final state matter when we
implement error correction? Figure 7 shows that a small
Hamming distance is much more strongly correlated with
decodability than the final state energy: the latter can be quite
high while the state remain decodable. Thus, the decoding
strategy tolerates relatively high-energy final states.

Discussion

This work demonstrates that QAC can significantly improve the
performance of programmable quantum annealing even for the
relatively unfavourable problem of antiferromagnetic chains,
which are dominated by encoded qubit errors manifested as
domain walls. We have shown that increasing the problem energy
scale by encoding into encoded qubits, introducing an optimum
penalty strength f to penalize errors that do not commute with
the penalty term, and decoding the excited states, reduces the
overall error rate relative to any strategy that does less than these
three steps, which comprise the complete QAC strategy.

The next step is to extend QAC to problems where the correct
solution is not known in advance, and is in fact the object of
running the quantum annealer. Optimization of the decoding
scheme would then be desirable. For example, detected errors
could be corrected by solving a local optimization problem,
whereby the values of a small cluster of encoded qubits that were
flagged as erroneous and their neighbours are used to find the
lowest energy solution possible. Other decoding schemes could be
devised as needed, drawing, for examSgle, on recent developments
in optimal decoding of surface codes”. Another important venue
for future studies is the development of more efficient QAC-
compatible codes capable of handling larger weight errors.
Ultimately, the scalability of quantum annealing depends on the
incorporation of fault-tolerant error correction techniques, which
we hope this work will help to inspire.

Methods

Experiment details. Most of our experiments were performed on the D-Wave
Two (DW2) ‘Vesuvius’ processor at the Information Sciences Institute of the
University of Southern California. The device has been described in detail
elsewhere3>°1:%2, The D-Wave processors are organized into unit cells consisting of
eight qubits arranged in a complete, balanced bipartite graph, with each side of the
graph connecting to a neighbouring unit cell, as seen in Fig. 8, known as the
‘Chimera’ graph>%. The D-Wave One ‘Rainier’ processor is the predecessor of the
DW?2 and was used in our early experiments; it is described and compared with the
DW?2 in the Supplementary Methods and in Supplementary Note 1. The annealing
schedule for the DW?2 is shown in Fig. 9.

All our DW2 results were averaged over 24 embeddings of the chains on the
processor (except U in Figs 2 and 3d, which used 188 embeddings), where an
embedding assigns a specific set of physical qubits to a given chain. After
programming the couplings, the DW2 device was cooled for 10ms, and then

Figure 10 | Contraction of the encoded graph to K3 3. (a) A portion of the encoded graph over encoded qubits. (b-d) Contraction of paths in the
original graph into edges. Paths consisting of two edges and a vertex are selected (represented in the figure as dotted lines), and then contracted
into a single edge connecting the ends of the chosen path (shown as a new solid line). The condensed graph (e) is isomorphic to the standard

representation of the K53 bipartite graph (f).
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5,000 annealing runs per embedding were performed using the minimum DW2
annealing time of #; = 20 ps for every problem size N, Ne{2,3,...,86},0e{0.1,0.2,

., 1.0} and fe{0.1, 0.2, ..., 1.0}. Annealing was performed at a temperature of
17 mK (~2.2 GHz), with an initial transverse field starting at A(0)~33.8 GHz,
going to zero during the annealing, while the couplings are ramped up from near
zero to B(t)~20.5 GHz.

Error bars. Error bars in all our DW2 plots were calculated over the set of
embeddings and express the s.e.m. 6/v/S, where % =1 158 | (x—Xx)? is the sample
variance and S is the number of samples.

Code and non-code states. The ‘code states’ |0;) =[0;,...0;,) and |1;) =|1;,...1;,)
of the encoded Ising Hamiltonian equation (3) are elgenstates of J_f with
eigenvalues n and — n, respectively. ‘Non-code states” are the remammg 2" -2
eigenstates, having at least one bit- ﬂlp error. The states |0;) ‘0 |1 |1 ) and

|0;) |1 ‘1 ‘0 ) are eigenstates of 67d?, also with eigenvalues n and —n,
respectlvely Therefore, the ground state of Hlsmg is identical, in terms of the
code states, to that of the original unencoded Ising Hamiltonian, with N=N.

Proof that the encoded graph is non-planar. The solution of the Ising model
over the encoded graph over the processor, shown in Fig. 1c is an NP-hard
problem, just as the same problem over the original hardware graph is NP-hard.
The key lies in the effectively three-dimensional nature of both graphs; the
ground state of Ising spin glasses over non-planar lattices is an NP-hard
problem?®

We provide a graphical proof of non-planarity for the encoded graph here.
The existence of a subgraph homeomorphic to the K;; complete bipartite graph
with three vertices on each side is sufficient to prove that a given graph is
non-planar®. This subgraph may take as its edges paths within the graph being
studied. We take a section of the encoded graph and, by performing a series of
allowed moves of condensing paths to edges, show that the section is indeed
homeomorphic to Kj .

We begin with an 18-qubit section of the regular encoded graph, shown in
Fig. 10a. This encoded graph is then condensed along its paths by repeatedly
removing two edges and a vertex and replacing them with a single edge
representing the path. A clear sequence of these moves is shown in Fig. 10b-d. The
studied subgraph has now been condensed into the form of the desired K; 5 graph,
as is made clear by labelling and rearranging the vertices as in Fig. 10e. The
encoded graph is therefore proved non-planar.

Adiabatic Markovian master equation. To derive the master equation used in
performing the simulations, we consider a closed system with Hamiltonian

H(t) = Hy(t) + Hy +g A, © B,, (6)
o
where Hg(t) is the time-dependent system Hamiltonian (which in our case takes
the form given in equation (2)), Hy is the bath Hamiltonian, {A,} are Hermitian
system operators, {B,} are Hermitian bath operators and g is the system-bath
interaction strength (with dimensions of energy). Under suitable approximations, a
master equation can be derived from first principles* describing the Markovian
evolution of the system. This equation takes the Lindblad form>®

hz ZZ Vap(@

x@mmmnh —{anLMmme,

where Hg is the Lamb shift term induced by the interaction with the thermal bath,
o is a frequency, y,4(w) is a positive matrix for all values of @ and L,,,(t) are time-
dependent Lindblad operators. They are given by

Luo(t) = Y Onoany(0)(ea(0)|Axlen(£))ea () (e (1) ©)

S0 = — L 1Hs(0) + His(0)

7)

o0

Tup() = / dt e (M B,e~ M By ), 9)
-0

H]_S h a(Z/j;s,(/; U) L/;LJ( ) (10)

Sup w)f/dm Vap (@) ( lw/), (11)

where P is the Cauchy principal value, Ay, (t)=¢,(t) — &,(t), and the states |g,(t) >
are the instantaneous energy eigenstates of Hy(f) with eigenvalues &,(t) satisfying

Hy(8)ea (1)) = a(t)ea(t)), (12)

For our simulations, we considered independent dephasing harmonic oscillator
baths (that is, each qubit is coupled to its own thermal bath) such that

SaeB=YdoY (ki) (13)
o o k

where by, and b;[y are, respectively, lowering and raising operators for the kth

oscillator of the bath associated with qubit o and satisfying [by.,,b, k, ] =0k forall
o. Furthermore, we assume an Ohmic spectrum for each bath such that

2mg*nw

/m)e*w/“c, (14)
Py

& up(@) = Sup -
where f is the inverse temperature, 7 (with units of time squared) characterizes the
Ohmic bath and . is a UV cutoff. In our simulations, we fix w.= 81t GHz to
satisfy the approximations made in deriving the master equation (see Albash
et al.* for more details), and we fix 1/~ 2.2 GHz to match the operating
temperature of 17 mK of the D-Wave device. The only remaining free parameter is
the effective system-bath coupling

K = g n/H, (15)

that we vary to find the best agreement with our experimental data. Further details
are given in Supplementary Note 2.
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