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Abstract
Dynamical decoupling (DD) is a promising tool for preserving the quantum states of qubits.
However, small imperfections in the control pulses can seriously affect the fidelity of
decoupling, and qualitatively change the evolution of the controlled system at long times.
Using both analytical and numerical tools, we theoretically investigate the effect of the pulse
error accumulation for two aperiodic DD sequences, Uhrig’s DD (UDD) protocol (Uhrig 2007
Phys. Rev. Lett. 98 100504), and the quadratic DD (QDD) protocol (West et al 2010 Phys.
Rev. Lett. 104 130501). We consider the implementation of these sequences using the electron
spins of phosphorus donors in silicon, where DD sequences are applied to suppress dephasing
of the donor spins. The dependence of the decoupling fidelity on different initial states of the
spins is the focus of our study. We investigate in detail the initial drop in the DD fidelity, and
its long-term saturation. We also demonstrate that by applying the control pulses along
different directions, the performance of QDD protocols can be noticeably improved, and
explain the reason for such an improvement. Our results can be useful for future
implementations of the aperiodic decoupling protocols, and for better understanding of the
impact of errors on quantum control of spins.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Mitigating the effect of decoherence is an important problem
in the emerging area of quantum information processing (QIP)
[1] and other quantum-based technologies [2–9]. Dynamical
decoupling (DD) is a promising tool for this task [10, 11].
Originating from the ideas that underlie the spin echo effect
in nuclear magnetic resonance (NMR) [12, 13], DD employs
a specially designed sequence of control pulses applied to the
qubits (or the central spins) in order to negate the coupling
of the central spins to their environment. A variety of
DD protocols have been developed, analysed and employed
for a few decades in the area of high-resolution NMR [14,
15]. It was suggested later that the decoupling property of
these protocols can be used for a more general purpose of
suppressing decoherence and achieving high-fidelity quantum
operations, thus giving rise to extensive theoretical [11, 16–27]
and experimental [28–40] investigation of various novel
aspects of DD in the QIP context. Since DD requires no
feedback and no ancilla resources, and is applicable to a wide
range of systems, it presents a promising tool for lowering

the number of quantum errors beyond the error correction
threshold [1].

Performance analysis of the decoupling protocols is often
based on the Magnus expansion (ME) [14], which is an
asymptotic cumulant expansion of the evolution operator of the
system, with the characteristic inter-pulse delay (or duration
of a single DD cycle, for periodic sequences) playing the role
of the small expansion parameter. By designing the protocols
which nullify more and more expansion terms, one expects
that in favourable experimental situations the decoupling
fidelity increases. An example of the first-order decoupling
protocol is a very basic periodic dynamical decoupling (PDD)
sequence [11, 41], which consists of repeating the basic
cycle d − π − d − π , where d denotes the free evolution
of the system, and π denotes a 180◦ spin rotation around e.g.
the x-axis (all analysis here and below is performed in the
rotating frame, i.e. in the coordinate frame rotating around
the z-axis with the Larmor precession frequency [13]). This
sequence works for the Ising-type coupling, for instance, when
a central spin is coupled to the decohering bath via the term
SzB, where Sz is the z-component of the central spin and
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B is the bath operator. Such terms lead to pure dephasing
of the central spins in the x–y plane, i.e. only transverse
components of the central spin are affected by the bath. In
order to eliminate more general type of coupling, involving
decoherence of all components of the central spin, a two-
axis control is needed, when the 180◦ rotation axes alternate
between x and y directions [11], so the basic period of the PDD
sequence has a form d − πX − d − πY − d − πX − d − πY ,
with πX and πY denoting the π rotations around x and y,
respectively. To increase the decoupling order, eliminating the
second-order ME terms as well, we need to use more advanced
sequences than PDD. One possibility is to use symmetrized
sequences (SDD) [11, 14, 41] having a twice longer cycle,
consisting of the PDD cycle followed by its mirror image.
Another approach to achieve higher-order decoupling is to
use concatenated DD (CDD) protocol, which removes the
system–bath coupling terms in the ME up to the nth order by
nesting the PDD sequence recursively to itself n times [16, 18,
23, 42]. The number of pulses in CDD increases exponentially
with the concatenation level, approximately as 4n. Within the
CDD approach, the total decoupling time can be increased
either by increasing the concatenation order, or by periodically
repeating the fixed-level CDD protocol.

Another way to improve the decoupling fidelity is to
optimize positions of the pulses, thus creating a family of
aperiodic sequences where the inter-pulse delays are not
necessarily commensurate. In [19] Uhrig proposed a sequence
(later abbreviated as UDD), where optimization of the pulse
positions provides nth order decoupling using n pulses
[43, 44]. Uhrig’s DD protocol (UDD) has been implemented
and tested experimentally in different systems [31–33, 36–38].
Theoretical studies have shown that UDD is optimal when
the noise spectrum of the bath has a sharp high-frequency
cutoff [32, 33, 44], while for the spectra with soft cutoffs the
protocols with periodic structure, such as the Carr–Purcell–
Meiboom–Gill [13] (CPMG) sequence, perform better
[20, 27, 37, 45]. While UDD employs a single-axis control,
and therefore suppresses only pure dephasing, several UDD-
based aperiodic protocols were developed to suppress general
decoherence by incorporating double-axis controls, including
the concatenated version of UDD (CUDD) [46], and quadratic
DD (QDD) where two UDD sequences based on spin rotations
about perpendicular axes are nested into each other [25]. In
CUDD, the number of pulses also grows exponentially but
slower than CDD, and in QDD the pulse number required to
suppress n-order decoherence is of the order of O(n2).

While DD protocols are usually designed based on the
assumption of ideal pulses, in reality the accumulation of small
imperfections of the pulses can severely affect the decoupling
fidelity and even qualitatively change the evolution of the
central spins. The influence of the pulse errors on the DD
protocols has been studied from early days of NMR [15, 47]
within the ME (or ME-like) settings, by considering the pulse
errors as extra terms in the Hamiltonian. However, such an
approach is not always satisfactory. First, the convergence
conditions of ME are not always satisfied in the experiments,
although the DD may still efficiently suppress decoherence.
Second, due to its asymptotic nature, the ME can miss the

possibility of disastrous pulse error accumulation at long times,
when the number of pulses becomes very large. Detailed
studies of the errors introduced by the finite pulse width
have been performed for CDD [42] and UDD [48]. The
experimental study of the systematic errors in the rotation axis
and angle has been done for a number of periodic protocols
and for UDD [36], and both error types (finite-width and
systematic) have been discussed for dynamically corrected
gates [49]. The theoretical–experimental investigation of the
long-term accumulation of the systematic pulse errors has been
done for several periodic-based protocols, PDD, SDD and
CDD [40, 50].

In this work, we present a theoretical analysis of the
aperiodic protocols, UDD and QDD, focusing on the long-term
accumulation of the systematic pulse errors. These errors can
be much more devastating than the imperfections associated
with the finite width of the pulses. We use numerical modelling
to analyse the situation when the aperiodic protocols with
imperfect pulses are used for decoupling of the electron spins
of the phosphorus donors in silicon. This system may present
a promising platform for scalable solid-state QIP, and is a
good test bed for studying a number of fundamental issues in
quantum dynamics and quantum control of solid-state spins
[51–54]. The Si:P system is well characterized [55–58], DD
of the electron spins of P donors is efficiently implemented via
pulsed ESR technique and the realistic pulse error parameters
have been estimated earlier [40, 50]. Comparing the results of
our study below with the previous works on periodic protocols
in the same system, we find that the aperiodic sequences
provide reasonable decoupling fidelity, but they are more
demanding of the pulse error magnitude than e.g. CDD. We
also demonstrate that, by choosing the right set of two-axis
controls, the effect of the pulse errors can be significantly
reduced, and explain the reason behind this improvement. It is
interesting that the right choice for QDD protocol, employing
rotations around the z and y axes, is a bad choice for CDD
and PDD, where the rotations around x and y should be used
[40, 50]. It again demonstrates that the analysis of the pulse
error accumulation is, in general, protocol-specific.

The rest of the paper is organized as follows. In section 2,
we describe the Si:P system and present a model for the
pulse errors. In section 3, we present the analytical and
numerical results for UDD and QDD. Conclusions are given in
section 4.

2. Description of the system

2.1. The phosphorus-doped silicon system

The electron spins of P donors in silicon have long relaxation
and coherence times [55–57], and have been used earlier to
explore fundamental aspects of quantum spin dynamics and
DD [29, 40, 50, 52, 57, 59–61]. In this study, we consider the
same experimental situation as described in [40]. The sample
is isotopically purified bulk silicon with 29Si concentration
∼800 ppm, and very low doping density of phosphorus, so
that the coupling between different P donor spins can be
neglected at the relevant timescales. A large static (quantizing)
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magnetic field is applied along the z-axis to the system, and
the temperature is sufficiently low (8 K in the experiments
reported in [40]). The relaxation time T1 of the P electron spin
is very long, so the longitudinal relaxation is neglected here.
Similarly, the coherence time T2, defined as the spin echo decay
time, is long (several milliseconds, limited by instantaneous
diffusion) and will also be neglected below [40, 52, 57].

Thus, we consider only pure dephasing of the P electron
spins. One important dephasing channel is the Ising-type
hyperfine coupling to the 29Si nuclear spins [55–57, 59, 60].
Due to rather large localization radius of the P donor electron
in silicon, the P electron spin couples to a large number (bath)
of 29Si nuclear spins. For an isotopically purified sample
considered here, the interactions between different 29Si nuclear
spins are small and can be neglected, so we are dealing with the
static nuclear spin bath. Moreover, since the P donors are well
separated, the 29Si nuclei which are appreciably coupled to one
P electron spin interact very weakly with other donor centres,
so each donor can be considered as a separate central spin
with its own static spin bath. Another important contribution to
dephasing is the inhomogeneous broadening due to quasistatic
fluctuations of the quantizing magnetic field. Therefore, in the
frame rotating with the frequency at the centre of the ESR
line of the P electrons, the Hamiltonian for a P electron spin
coupled to the bath is

H = BSz (1)

where Sz is the z-component of the electron spin operator, and
B is the total random static offset field created by the bath of
29Si nuclei and the fluctuations of the external field [13, 62].
Experiments show that the ESR lineshape is Gaussian with the
width of 50 mG, so that the distribution function of B is

P(B) = 1√
2πb2

exp

[
− B2

2b2

]
(2)

with b = 50 mG. Note, however, that our results are not very
sensitive to the specific shape of the distribution. The hyperfine
coupling of the P electron to the donor’s own 31P nuclear spin
(I = 1/2) is large [56, 58], of the order of 100 MHz, so that
the two hyperfine lines are well separated, and we assume that
only one line is excited. Then the on-site hyperfine coupling
to 31P nucleus just shifts the ESR frequency, and we neglect
this interaction.

As is standard in NMR and ESR, the experimental
temperature is much larger than the Zeeman energy of the
electron spins in the quantizing field. Thus, we describe the
state of a P spin within the high-temperature approximation,
as is customarily done in NMR/ESR theory [13], using the
density matrix ρ ∝ 1 + αSz, where α is small. Since the T1

time is extremely large, and the identity matrix is not affected
by the unital evolution, we can neglect it, and consider the
electron spin as being in a pure state with Sz = 1/2 (so-
called pseudo-pure state). Other initial (pseudo)pure states,
e.g. along the x and y axes, can be prepared by the π/2
pulses applied along the y and −x axes, respectively. For
pure initial states, performance of the decoupling can be
conveniently quantified by the input–output fidelity, i.e. by
the overlap between the initial and the final (reduced) density
matrices of the system. By virtue of the relation ρ(t) =

1
2 + 〈Sx〉σx + 〈Sy〉σy + 〈Sz〉σz, the average spin projections
〈Sx〉, 〈Sy〉, and 〈Sz〉 can be equivalently used as measures of
the decoupling performance. Note that the angular brackets
here denote both quantum-mechanical averaging (including
trace over the bath states) and the averaging over the ensemble
of different P electron spins. Below, we use the rescaled
fidelity, which for the initial state along the axis α = x, y, z is
defined as Fα = 2〈Sα〉.

2.2. The analytical model of pulse errors

For the experimental situation under consideration the
systematic errors in the pulse parameters (rotation angle and
the direction of the rotation axis) are much larger than the errors
associated with the finite pulse width. Therefore, we treat each
π -pulse as an instantaneous but imperfect spin rotation. For
a nominal π -pulse about the x axis (the πX pulse) the unitary
operator describing the spin evolution is

UX = exp [−i(π + εx)(S · �n)] (3)

where εx is the error in the rotation angle, and �n =(√
1 − n2

y − n2
z, ny, nz

)
is the unit vector along the rotation

axis, where the small parameters ny and nz characterize the
deviation of the actual rotation axis from the x axis. Similarly,
the rotation operator for a nominal πY pulse is

UY = exp [−i(π + εy)(S · �m)] , (4)

where εy is the rotation angle error and �m =
(mx,

√
1 − m2

x − m2
z, mz) is the actual rotation axis, with

small parameters mx and mz. During the delay between
neighbouring pulses, the evolution operator is simply

Ud(τ) = exp[−iBSzτ ] (5)

where τ is the duration of the delay between the pulses (e.g.
for periodic sequences studied in [40] equal to 11 μs).

To model the systematic errors, we take into account
that the resonant ac field Bp, which rotates the spins during
pulses, is not homogeneous over the sample. We assume for
simplicity that this field varies only along one spatial axis,
denoted as l, and the sample is located between l = +d and
l = −d. We also assume that the sample is placed optimally
with respect to the field, with the sample center l = 0 located
at the maximum of Bp. Then the spatial dependence of Bp

has the form Bp(l) = B̄p + �Bp[1 − 3l2/d2], where B̄p is the
average magnitude of the ac field over the sample and �Bp

characterizes the ac field inhomogeneity. If the pulse width tp
is adjusted to give B̄ptp = π , then the spins located at different
parts of sample will undergo rotation by different angles. For
the πX pulse, the resulting rotation angle errors εx will have
distribution

P(εx) = (1/2ε0)[3(1 − εx/ε0)]
−1/2, (6)

where −2ε0 � ε � ε0 and ε0 characterizes the magnitude of
the rotation angle errors. In a similar way, we assume that the
z-component of the rotation axis nz has the same distribution,
and its magnitude is characterized by the parameter n0. We
also assume that the pulse errors for πX and πY pulses are
the same, taking εx = εy and mz = nz. The pulse error
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Figure 1. Decoupling fidelities of UDD-2 (a) and UDD-20 (b) as
functions of the total evolution time for initial states SX (red empty
circles, red lines), SY (green triangles, green lines) and SZ (blue
solid circles, blue lines).
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Figure 2. Decoupling fidelities of UDD-3 (a) and UDD-19 (b) as
functions of the total evolution time for initial states SX (red empty
circles, red lines), SY (green triangles, green lines) and SZ (blue
solid circles, blue lines).

parameters mx and ny have different nature: they characterize
the phase of the pulse, and can be adjusted very precisely,
so we assume them to be zero, following [40, 50]. Thus,
within this model, all pulse errors are characterized by only
two parameters, ε0 = 0.3 and n0 = −0.12. These values have
been determined in [40, 50], and have reasonable magnitude.
In spite of utter simplicity, this model reproduces (or, at least,
mimics) most features observed in experiments.

3. Numerical and analytical results

3.1. Performance of UDD

UDD is based on a single-axis control, i.e. all spin rotations
are performed about the same nominal axis, which we take as
x. For UDD of level 	, denoted as UDD-	, the πX pulses are
applied at times [19]

tj = t sin2

(
jπ

2	 + 2

)
, (7)

where t is the total evolution time, and j = 1, 2, . . . , 	 for
even 	 and j = 1, 2, . . . , 	 + 1 for odd 	. The simulation
results show that UDD of even levels and UDD of odd
levels behave differently. Figure 1 shows the decoupling
fidelities for UDD-	 as functions of total evolution time for
	 = 2, 20, and figure 2 shows the results for UDD-	 with 	 = 3
and 19.

We consider fidelities for three different initial states of the
central spins, directed along x, y and z axes. They characterize

how well the corresponding spin components are preserved.
For UDD-2, which is the same as a single cycle of CPMG, the
spin component SX is preserved with fidelity close to 1, while
the fidelities for the other two components are affected by
the pulse errors. For long evolution time, Fy and Fz saturate
at values ∼0.89. Strong dependence of the fidelity on the
initial state has been noticed and analysed before for periodic
protocols, and it is not unexpected that aperiodic sequences
demonstrate this feature as well [23, 36, 40, 50]. For 	 = 20,
SX is well preserved, demonstrating only a slow decay, while
Fy and Fz have initial values close to zero, and saturate to
a value around 0.5. Such low values even for t = 0 are
caused purely by a catastrophic accumulation of errors of 20
πX pulses.

Let us consider the level-2 UDD as an example in order
to examine the long time behaviour. The evolution operator,
up to second order in the pulse errors, and using ny = 0, is

UUDD
2 = −[

1 − θ2
x

/
2 − iσxθx − iσzθz

]
(8)

with θx = εx cos Bt
4 + 2nz sin Bt

4 and θz = εxnz cos Bt
2 +

(
n2

z −
ε2
x

4

)
sin Bt

2 . Although the qualitative features of the protocol
can be analysed using only the first-order expression for UUDD,
quantitative analysis of the fidelity requires the second-order
terms in this evolution operator. Taking into account that εx ,
nz and B are independent variables, and that 〈εx〉 = 〈nz〉 = 0,
the expression for Fy becomes

Fy = 1 − 2θ2
x

= 1 − 2

[〈
ε2
x

〉 〈
cos2 Bt

4

〉
+ 4

〈
n2

z

〉 〈
sin2 Bt

4

〉]
. (9)

Noting from equation (6) that 〈ε2
x〉 = 0.8ε2

0 , and 〈n2
z〉 = 0.8n2

0,
we arrive at

lim
t→∞ Fy = 1 − 0.8

(
ε2

0 + 4n2
0

) = 0.88. (10)

This is close to the value 0.89 which we see in the simulations
shown in figure 1 for UDD-2. The analysis above relies
on the fact that B is time independent, so in experiments
such saturations will be replaced by decays at different
rates, depending on the bath dynamics. Therefore, although
our results extend until t = 2000 μs, at these times the
instantaneous diffusion and the internal bath dynamics should
be taken into account. We neglect these effects here since
they are beyond the scope of our present study, and require a
separate focused research effort.

For UDD of higher level, similar behaviour is observed.
In figure 1, the fidelities for UDD-20 are generally smaller
than for UDD-2, which reflects more serious accumulation of
the pulse errors.

An interesting feature, seen in figure 1, is that at longer
times, when dephasing becomes noticeable, the fidelities may
increase, as if decoherence counteracts the pulse errors. To
understand this, let us consider UDD-2 in the situation when
the errors nz are absent, and only the rotation angle error εx is
nonzero. If a spin is prepared along the y axis, and is subjected
to a sequence of imperfect πX pulses, then its y-component
rotates around the x-axis, and accumulates the rotation angle
errors. But if the random field B moved the spin away from
the y-axis towards the x-axis by the angle χ = Bt/4, then
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the spin component along the x axis is not affected by the
rotation angle errors, and the spin is refocused with better
precision. Correspondingly, the fidelity for a fixed value of
B demonstrates a modulation proportional to − cos2 χ , with
maximum fidelity achieved at χ = π/2.

For UDD of the odd level 	 = 2n − 1, the number of
pulses is 2n since there is a π pulse at the end of the whole
evolution. As shown in figure 2, for a given UDD-	, when
the total evolution time is short, SX is better preserved than the
other two spin components. At long time, Fx and Fy saturate at
similar values, while Fz saturates at a lower value. The process
of saturation is much slower for 	 = 19 than for 	 = 3.

To gain insight into the behaviour of odd-level UDD, we
consider UDD-3. The evolution operator for this sequence, up
to first order in the pulse errors, is

UUDD
3 = 1 − iθnσx − iηnσy (11)

with

θn = εx

2
[1 + 2 cos(Bτ1) + cos(B(τ2 − τ1))]

+ nz[2 sin(Bτ1) + sin(B(τ2 − τ1))] (12)

and

ηn = −nz[1 − 2 cos(Bτ1) + cos(B(τ2 − τ1))]

− εx

2
[2 sin(Bτ1) − sin(B(τ2 − τ1))], (13)

where τ1 and τ2 refer to the durations of the first and second
inter-pulse delays. In general, for quantitative calculation of
the fidelities, we also need to consider the second-order terms,
but it can be shown that for UDD-3 their contribution is zero.
At long times, when 〈sin(Bτ1)〉 = 〈sin(B(τ2 − τ1))〉 = 0 (and
similarly for cosines), the fidelity Fy acquires a form

Fy = 1 − 2
〈
θ2
n

〉
= 1 − 2

〈
5n2

z +
ε2
x

4
+

(
ε2
x

4
− n2

z

)
(4 cos2(Bτ1)

+ cos2(B(τ2 − τ1)))

〉

(14)

and we finally obtain

lim
t→∞ Fy = 1 − 5〈n2

z〉 − 7〈ε2
x〉

4
= 0.82, (15)

which coincides with the result of the numerical simulations.
We now examine the fidelities at t → 0. Since we

treat pulses as instantaneous rotations, this situation should
be understood as the limit where the total evolution time is
much smaller than the dephasing time T ∗

2 = 1/b, but much
larger than the total width 2ntp of all pulses. Decay of fidelity
in this case arises only from accumulation of the pulse errors.
The evolution operators for UDD of both even (	 = 2n) and
odd (	 = 2n − 1) levels have the same expression

lim
t→0

UUDD
	 = (−1)n (1 − inεxσx) , (16)

corresponding to a spin rotation about the x axis with the
rotation angle proportional to n. Small differences in the
rotation angles for different spins are scaled by n. For large
n the spins become almost uniformly distributed in the y–z

plane; hence, Fy and Fz are close to zero, while Fx is close to
1, as seen in figures 1 and 2 for 	 = 20 and 	 = 19.

3.2. Performance of QDD

In order to suppress general decoherence, DD sequence has
to use two-axis control. An extension of UDD, the QDD, has
been suggested for this purpose [25]. QDD is composed of
two nested UDD sequences, with inner and outer sequences
employing the rotations about two different perpendicular
axes. A QDD sequence of order 	, which we denote as QDD-
	, can suppress decoherence to 	th order terms with (	 + 1)2

inter-pulse intervals.

3.2.1. QDD based on πX and πY pulses. We first consider
the QDD sequence with the πX pulses in the outer hierarchical
level, and πY pulses in the inner hierarchical level, examining
the effects of error accumulation.

Like UDD, QDD of even and odd levels also behave
differently. For 	 = 2n − 1, the sequence of QDD-	 is

UDD(Y)
	 (τ1)−πX−UDD(Y)

	 (τ2)−πX · · · −UDD(Y)
	 (τ	+1)−πX

(17)

where
∑	+1

j=1 τj = t and UDD(Y)
	 (τj ) denotes UDD-	 based

on πY pulses with evolution time τj . The division of the total
time t into intervals τj follows the same rule as UDD, i.e.
τj = tj − tj−1, with tj given by equation (7). The number of
pulses in QDD with 	 = 2n − 1 is (	 + 1)(	 + 2). For 	 = 2n

the sequence QDD-	 is

UDD(Y)
	 (τ1)−πX− · · · −UDD(Y)

	 (τ	)−πX−UDD(Y)
	 (τ	+1)

(18)

and the number of pulses is 	(	 + 2).
Considering the limit t → 0, we have for even and odd

levels

lim
t=0

U
QDD
2n = 1 − in(εxσx + εyσy) (19)

lim
t=0

U
QDD
2n−1 = (−1)n (1 − inεxσx) . (20)

That is, for short total evolution time, in a sequence QDD-
(2n), the dominant pulse error is εx , while in QDD-(2n − 1)

both εx and εy contribute in first order. The difference is due
to an extra πX pulse at the end of the odd-order QDD.

Simulation results for QDD-3 are shown in figure 3(a).
Fidelities for all three spin components exhibit long-time
saturation. The saturation value for SX is higher than for the
other two components. However, Fx in QDD-3 exhibits initial
decay (even for t = 0), instead of being preserved as expected
from equation (20). This is because for the system under
consideration, the error parameter ε0 = 0.3 is pretty large, and
the pulse errors may appreciably contribute in higher orders.
Taking QDD of 	 = 3 as an example, in the limit t → 0, the
sequence is a fourfold repetition of the unit

(πY − πY − πY − πY) − πX. (21)

Expanding the corresponding evolution operator up to second
order in the pulse errors, and taking into account mx = ny = 0,
we find that

U = (
1 − 2ε2

x

) − 2iεxσx + 2iεx(2εy + nz) σz. (22)
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Figure 3. Decoupling fidelities as functions of the total evolution
time for initial states SX (red empty circles, red lines), SY (green
triangles, green lines) and SZ (blue solid circles, blue lines). (a)
QDD-3 (20 pulses). (b) QDD-4 (24 pulses).
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Figure 4. Decoupling fidelities for QDD(ZY) as functions of the
total evolution time for initial states SX (red empty circles, red
lines), SY (green triangles, green lines) and SZ (blue solid circles,
blue lines). (a) level 3 QDD(ZY); (b) level 5 QDD(ZY); (c) level 2
QDD(ZY); (d) level 4 QDD(ZY).

Thus, the rotation axis deviates from the x axis towards the z

axis, and the spin state along the x axis is not exactly parallel
to the rotation axis, resulting in the initial drop of Fx .

Figure 3(b) shows the simulation results for QDD-4, with
24 pulses. The saturation values in a descending order are Fy ,
Fx and Fz. The initial values for Fx and Fy are the same, which
can be explained by equation (19) taking into consideration
that εx = εy in our model.

As we see, the QDD sequences are rather sensitive to the
pulse errors. While the saturation at long times is seen for all
spin components, the initial fidelity loss is noticeable.

3.2.2. QDD based on πZ and πY pulses. In order to further
understand the effect of pulse errors, we briefly consider
another QDD sequence with πZ pulses in the outer hierarchical
level and πY pulses in the inner one. We denote such
a sequence as QDD(ZY). To produce πZ pulses in ESR
experiments, the pulses πX and πY are applied back-to-back
[40], and our simulations reproduce this situation, taking into
account the πX and πY pulse errors. Figure 4 shows the
simulation results for QDD(ZY) of levels 3 and 5 (two upper
panels), and 2 and 4 (two lower panels), with 20 and 42, and
8 and 24 pulses, respectively. While QDD(ZY) of even levels

provide no obvious improvement compared to QDD sequences
based on πX and πY pulses, the QDD(ZY) protocols of odd
level preserve all three spin components, with high saturation
values at long times.

To understand this effect, let us inspect the structure of the
QDD(ZY) sequence. As seen from equation (17), since UDD
of the odd level has a π -pulse at the end of the sequence, after
nesting this πY pulse is followed by a πZ pulse without delay,
and these two adjacent pulses are equivalent to a (imperfect)
πX pulse. The sequence of QDD(ZY) thus has a structure

(τ1,1 − πY − τ1,2 − πY − τ1,3 − πY − τ1,4) − πX

− (τ2,1 − πY − τ2,2 − πY − τ2,3 − πY − τ2,4) − πX

− (τ3,1 − πY − τ3,2 − πY − τ3,3 − πY − τ3,4) − πX

− (τ4,1 − πY − τ4,2 − πY − τ4,3 − πY − τ4,4) − πX (23)

where τi,j denotes the j th delay in the ith UDD in the whole
sequence. Therefore, QDD(ZY) of the odd level is actually
based on pulses about x and y axes, and has a structure similar
to the periodic sequences based on x and y rotations, which
are known to be very robust with respect to the pulse errors
[37, 38, 40, 45, 50, 63]. Such a structure cannot be achieved
with QDD based on πX and πY pulses. At even level, the
x, y-based QDD lacks a final πX pulse, see equation (18). At
odd level, the x, y-based QDD has even number of πY pulses
sandwiched by πX pulses, see equations (17) and (21), while
for robustness we need odd number of y-pulses.

In the limit t → 0, to first order in the pulse errors, the
evolution operator for QDD(ZY) of the level 	 = 2n − 1 is

U
QDD(ZY)
	=2n−1 = (−1)n[1 + 2in(mx + ny)σz]. (24)

Since for our system mx = ny = 0, the DD performance is
determined by accumulation of the higher-order errors.

Therefore, for QDD(ZY) of the odd level, the dominant
pulse errors are the in-plane components of rotation axis errors.
For the system under consideration such errors are negligible,
and QDD(ZY) is a good choice for decoherence suppression
for all quantum states.

4. Conclusion

We have studied accumulation of the pulse errors for two
aperiodic dynamical decoupling sequences, UDD and QDD,
using the phosphorus electron spins in silicon as an example
of experimental implementation. We show that the decoupling
fidelity strongly depends on the initial state. At long times, we
observe saturation of fidelities. UDD and QDD of even and
odd levels are found to perform differently.

UDD protocol is based on a single-axis control, so the
decoupling fidelity is highest for the spin component along
the control axis. QDD preserves the three spin states with
closer fidelities. In particular, QDD of the odd level based
on πZ and πY pulses is very robust with respect to the pulse
errors, due to its special structure. Our results can be useful
for experimental implementations of the aperiodic decoupling
protocols, and for deeper understanding of the influence of
errors on quantum control of spin systems.
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