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In a recent preprint (arXiv:1305.4904) entitled “Classical signature of quantum annealing” Smolin
and Smith point out that a bimodal distribution presented in (arXiv:1304.4595) for the success prob-
ability in the D-Wave device does not in itself provide sufficient evidence for quantum annealing, by
presenting a classical model that also exhibits bimodality. Here we analyze their model and in addi-
tion present a similar model derived from the semi-classical limit of quantum spin dynamics, which
also exhibits a bimodal distribution. We find that in both cases the correlations between the success
probabilities of these classical models and the D-Wave device are weak compared to the correlations
between a simulated quantum annealer and the D-Wave device. Indeed, the evidence for quantum
annealing presented in arXiv:1304.4595 is not limited to the bimodality, but relies in addition on the
success probability correlations between the D-Wave device and the simulated quantum annealer.
The Smolin-Smith model and our semi-classical spin model both fail this correlation test.

Whether the devices built by D-Wave [1] exhibit quan-
tum effects on a large scale is a subject that has attracted
significant attention recently. Quantum tunneling involv-
ing 8 superconducting flux qubits was recently demon-
strated in such a device [2]. To test whether quantum
effects persist on a scale of more than 100 qubits we used
a D-Wave One device with 108 functional qubits to run
millions of experiments in which the device attempted to
find the ground state of 1000 randomly selected Ising spin
glass instances [3]. For different values of the number of
spins N ∈ [8, 108] we ran each instance 1000 times and
created a histogram of success probabilities. We found
that this histogram is bimodal once N becomes large,
with a higher number of “easy” and “hard” instances
(high and low success probabilities, respectively) than in-
termediate instances. We also performed quantum Monte
Carlo (simulated quantum annealing, SQA) simulations
for the same Ising model instances and observed a very
similar bimodal histogram for each N . In contrast, clas-
sical simulated annealing (SA) calculations for the same
problem instances yielded a unimodal histogram with a
large concentration of instances at intermediate success
probabilities.

Very recently a preprint by Smolin and Smith ap-
peared, questioning whether such histograms are suffi-
cient to establish that the D-Wave device exhibits quan-
tum effects [4]. To this end they presented a classical
“compass needle” spin model which also exhibits a bi-
modal histogram for random instances satisfying the con-
straints of the D-Wave One hardware graph. We concur
that the mere difference between a bimodal and unimodal
distribution is insufficient, and will argue here that the

Smolin-Smith model in fact supports our central conclu-
sion that the D-Wave device is a quantum annealer.

To this end we note that bimodality versus unimodal-
ity alone was indeed not solely the basis for our conclu-
sion that the D-Wave device performs quantum anneal-
ing with more than 100 qubits. A key additional piece
of evidence we presented in [3], which was unaccounted
for by Smolin and Smith, are the correlations between
the success probabilities of instances for the D-Wave de-
vice and the simulated quantum annealer. As discussed
in detail in our work [3] the “easy” and “hard” peaks in
both cases contain similar numbers of instances and their
hardness correlates, i.e., the same subset of instances is
hard or easy for both the device and the simulated quan-
tum annealer.

In the classical O(2) spin-model presented in [4] such
correlations are absent, which can already be deduced
from the fact that the two peaks in the bimodal distribu-
tion presented there have a very different weight distribu-
tion compared to both our D-Wave device measurements
and numerical SQA results. There are many more “hard”
instances in the model of Ref. [4].

Thus the burden of proof on classical models attempt-
ing to replicate the statistics of the D-Wave One mea-
surement outcomes is much heavier than a demonstra-
tion of bimodality, which is merely a necessary condition
(not satisfied by SA, as shown in [3]): the correct success
probability correlations should also be a feature of any
such model.

To illustrate this aspect we investigated a model re-
lated to that of Smolin and Smith, based on the semi-
classical limit of quantum spin dynamics. This model

ar
X

iv
:1

30
5.

58
37

v1
  [

qu
an

t-
ph

] 
 2

4 
M

ay
 2

01
3



2

more closely resembles the classical dynamics of the sys-
tem than the O(2) model of [4], and replaces the quan-

tum spins by O(3) classical unit vectors ~Mi propagated
via the equations of motion

∂ ~Mi

∂t
= ~Hi(t)× ~Mi , (1)

where the time-dependent field ~Hi(t) acting on spin i is a
sum of a decaying transverse field (along the x direction)
and a growing coupling term (along z):

~Hi(t) ≡ (1− t/tf )hêx − (t/tf )
∑
j

JijM
z
j êz , (2)

where tf is the total evolution time. This model is equiva-
lent to a mean-field model of the quantum spin-1/2 model
where using Hartree-Fock decoupling the wave function
is a product state, and we represent each SU(2) spinor
as an SO(3) vector.

The initial condition is to have all spins aligned along

the x direction: ~Mi(0) = (−1, 0, 0). To introduce ran-
domness we perturb this ideal initial condition and give
each spin a small random kick:

~Mi(0) = (−
√

1− δ2i − η2i , δi, ηi), (3)

where |δi|, |ηi| < 0.1. At the end of the evolution we use
the sign of the z-component of each spin as the value of
the Ising variable in the optimization problem.

We can furthermore add a damping term by replacing

~Hi → ~Hi + α( ~Hi × ~Mi). (4)

The resulting equation is the Landau-Lifshitz-Gilbert
equation, which is widely used to describe micromag-
netism [5]. The additional damping term will force the
spins to approach the axis of the effective local magnetic
field and release energy. This does not change the distri-
bution much but pushes it to the extremes (probability
0 or 1), thus making it more deterministic.

Figure 1 shows a histogram of the success probabilities
for this semi-classical O(3) annealer on 1000 instances
of a spin glass with Jij = ±1 on the 108-site chimera
graph of the D-Wave One device. As in [4] we observe
a bimodal distribution for this semi-classical model, but
with higher weight in the low-probability (“hard”) peak
than observed in the simulated quantum annealer and the
D-Wave device [3]. Compare with figure 3 in [4] which
similarly shows a larger “hard” peak.

The difference is more pronounced when one considers
the correlations with gauge-averaged success probabili-
ties of the same instances on the D-Wave One device,
as shown in figure 5C) of [3]. That figure, which ex-
hibits a strong positive correlation for all values of the
success probability, should be compared to the corre-
lations found between the D-Wave One device and the
semi-classical annealer, shown here in figure 2. Some in-
stances are easy for both the semi-classical annealer and
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FIG. 1. Histogram of the success probabilities of the O(3)
semi-classical annealer for 1000 random instances.

the D-Wave device (and a simulated quantum annealer);
for such instances a simple semi-classical algorithm finds
the ground state with high probability. However, strik-
ingly there is no apparent correlation between the hard
instances on the semi-classical annealer and the success
probability on the D-Wave device. Nor does there appear
to be a correlation for instances of intermediate hardness,
in contrast to the correlations seen in figure 5C) of [3].

We have performed a similar analysis for the model
of Ref. [4], which we refer to as an O(2) model since it
uses planar rotors. We show a histogram obtained by
our implementation of their model in figure 3 and the
correlation plot in figure 4. Again the correlations are
weak and this model does not explain the behavior of
the D-Wave device. Adjustment of the noise levels in the
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FIG. 2. Correlations of success probabilities between the
semi-classical O(3) annealer and the D-Wave device. Note
that the D-Wave machine succeeds with high probability on
certain instances which the semi-classical model finds hard.
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FIG. 3. Histogram of the success probabilities of the Smolin-
Smith O(2) model [4].

0.0 0.2 0.4 0.6 0.8 1.0
QA, gauge averaged

0.0

0.2

0.4

0.6

0.8

1.0

O
(2

) 
m

o
d

e
l

0

2

4

6

8

10

12

14

16

18

20

FIG. 4. Correlations of success probabilities between the
Smolin-Smith O(2) model and the D-Wave device.

O(2) and O(3) models does not improve the correlations.
Correlating our semi-classical O(3) model with the O(2)
model we find that both these models give similar success
probabilities as shown in figure 5. In fact, this figure
resembles the correlations between the D-Wave device
(after gauge averaging) and SQA, as seen in figure 5C)
of [3].

Additional evidence is presented in [3] for quantum ef-
fects beyond success probability correlations, where we
showed numerically that the hard instances are charac-
terized by small gaps in the spectrum during the anneal-
ing, while the easy instances typically have large gaps.
We also showed experimentally that for those runs where
the ground state is not found, easy instances tend to have
excited states that are a small Hamming distance away

from the ground state, while hard instances have a large
Hamming distance. As explained in [3], this agrees with
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FIG. 5. Correlations of success probabilities between the
Smolin-Smith O(2) model [4] and the O(3) model Eq.(2).

instances being hard due to small gap avoided level cross-
ings.

To summarize, Smolin and Smith are correct to point
out that it is insufficient to compare the modality of his-
tograms in order to infer that the D-Wave device per-
forms quantum annealing. Indeed, the claim made to this
effect in [3] is based on additional evidence, in particular
a strong positive correlation between the success proba-
bilities of instances for the D-Wave device and a simu-
lated quantum annealer, a test which the semi-classical
spin models presented here and in [4] fail.

The question of why SQA and semi-classical spin mod-
els correlate so differently with the D-Wave device is ob-
viously important and interesting. We note that while
SQA captures decoherence in the instantaneous energy
eigenbasis of the system, so that each energy eigenstate—
in particular the ground state—is itself a coherent su-
perposition of computational basis states, semi-classical
spin models assume that each qubit decoheres locally,
thus removing all coherence from the ground state. We
conjecture that the fact that the D-Wave machine suc-
ceeds with high probability on certain instances which
the semi-classical models finds hard, can be understood
in terms of this difference.

Appendix A: Data set

As a service to the community we provide the complete
data set of 1000 instances presented in [3] for N = 108
and the corresponding QA success probabilities as ancil-
lary file of this e-print.
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