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I show how to protect adiabatic quantum computation (AQC) against decoherence and certain control
errors, using a hybrid methodology involving dynamical decoupling, subsystem and stabilizer codes, and
energy gaps. Corresponding error bounds are derived. As an example, I show how to perform
decoherence-protected AQC against local noise using at most two-body interactions.
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Adiabatic quantum computation (AQC), originally de-
veloped to solve optimization problems [1], offers a fasci-
nating alternative to the standard circuit model [2] to which
it is computationally equivalent [3]. The effects of deco-
herence on AQC were studied in several works [4–6].
Unlike the circuit model, for which an elaborate theory
of fault tolerant QC exists along with a noise threshold for
fault tolerance [7], it is not yet known how to make AQC
fault tolerant. Here, I show how AQC can be protected
against decoherence and certain control errors. To do so, I
devise a hybrid method involving dynamical decoupling
(DD) [8], subsystem [9–11] and stabilizer codes [12], and
energy gaps [13,14].

Viewed as a closed system, AQC proceeds via slow
evolution on a time scale set by the system’s minimal
energy gap � from the ground state [1,3]. In the presence
of the system-bath interaction HSB, this gap can be signifi-
cantly reduced because the interaction will cause energy
level splittings, or an effective broadening of system en-
ergy levels; when these levels overlap, adiabaticity breaks
down and so does AQC, even at zero temperature [5]. A
bath at finite temperature presents another problem: in the
universality proofs [3], the system energy gap scales as an
inverse polynomial in the problem size, so that the tem-
perature too must be lowered polynomially to prevent
thermal excitations. All of the problems listed above are
due to the presence of HSB. Clearly, if HSB can be effec-
tively eliminated or reduced, this will enhance the fidelity
of AQC. The main tool I shall use to this end is dynamical
decoupling, which involves the application of strong and
fast pulses. Perhaps surprisingly, this can be done without
interfering with the slow adiabatic evolution.

Distance measure and operator norm.—As a distance
measure between states, I use the trace distance
D��1; �2� �

1
2 k�1 � �2k1, where kAk1 � TrjAj, jAj ����������

AyA
p

[2]. When applied to pure states �i � j iih ij, I
shall write D� 1;  2�. The operator norm is k A k�
supkj ik�1kAj ik � maxi�i, where �i 2 Spec�jAj�.

Closed-system adiabatic error.—Let s � t=T 2 �0; 1�
be the dimensionless time, with T the final time. Let the
system Hamiltonian that implements AQC,Had�s�, act on n

qubits. In AQC, the ground state j�ad�s�i of Had�s� at the
final time s � 1 encodes the solution to the computational
problem [1]. The actual final state j �1�i is the solution of
the Schrödinger equation dj i=ds � �iTHadj i (@ � 1
units are used throughout). In AQC, one is therefore inter-
ested in minimizing the error �ad � D� �1�; �ad�1��. Most
of the known AQC algorithms interpolate between initial
and final local Hamiltonians, H0 and H1, via Had�s� �
�1� f�s��H0 � f�s�H1, where f�0� � 0 and f�1� � 1,
and exhibit a final time that scales as a polynomial in the
problem/system size n. Locality means that k Had k
	�0O�n�, where �0 is the energy scale. Thus,
k djHad=ds

j k 	�0jd
jf=dsjjO�n�. Let fEi�s�gi�0 be the

eigenvalues of Had�s�, and let � � mini;sjEi�s� � E0�s�j
be the minimum gap from the instantaneous ground state
energy E0�s�. Assume that ��n� 	 �0n�z, where z > 0 is
the dynamical critical exponent. Depending on the differ-
entiability ofHad, and assuming that _Had�0� � _Had�1� � 0,
one can prove different versions of the adiabatic theorem.
For example, (i) [15]: if Had�s� is twice differentiable on
[0,1], then provided T 	 rk _Hadk

2=�3, the error can be
made arbitrarily small in the time dilation factor r > 1:
�ad < r�2. Or, (ii) [16]: if Had�s� is infinitely differentiable
on [0,1], then provided T 	 rNk _Hadk=�2, the error can be
made exponentially small in the order N of an asymptotic
expansion: �ad < r�N . In both cases,

 T 	 n�=�0; (1)

where � � 3z� 2 for case (i) and � � 2z� 1 for case (ii),
and I omitted the n-independent term jdjf=dsjj. In AQC,
the interpolation from Had�0� to Had�1� can be chosen at
will, in particular, so as to satisfy the above conditions on
Had. This shows that closed-system AQC is resilient
against control errors which cause Had�s� to deviate from
its intended path, as long as these do not modify the end
point Had�1�. This is a form of inherent fault tolerance to
control errors which is not shared by the circuit model [17].

Open system evolution.—A description in terms of Had

alone neglects the fact that in reality, the adiabatic quantum
computer system is never perfectly isolated. The actual
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Hamiltonian is H�t� � HS�t� 
 IB � IS 
HB �HSB,
where I denotes the identity operator, HS � Had �HC
(HB) acts on the system (bath) alone, HC�t� is a control
Hamiltonian, and HSB �

P
�S� 
 B�, where S� (B�) acts

on the system (bath). The role of HC is to implement a
DD procedure. The total propagator is U�t� �
T exp��i

R
t
0 H�t

0�dt0�, where T denotes time ordering.
The time evolved system state is �S�t� � TrB��t�, where
��t� � U�t���0�U�t�y is the joint system-bath state. Below,
I explain how to choose HC�t� so that

 �Had�t�; HC�t
0�� � 0 8 t; t0: (2)

It is this condition that will allow application of DD
without interfering with the adiabatic evolution. Consider
the uncoupled settingHSB � 0, to be denoted by the super-
script 0. The ideal, noise-free adiabatic system state is
�0
S;ad�t� � j�ad�t�ih�ad�t�j. Because the adiabatic, control,

and bath Hamiltonians all commute, we have �0�t� �
�0
S�t� 
 �

0
C�t� 
 �

0
B�t�, where �0

S�t� � j �t�ih �t�j
[�0

C�t� � j C�t�ih C�t�j] is the actual system evolution
under Had [HC], and �0

B�t� is the bath state evolved under
HB. Let �0

ad�t� � �0
S;ad�t� 
 �

0
C�t� 
 �

0
B�t� denote the

‘‘ideal adiabatic joint state,’’ with purely adiabatic evolu-
tion of the first factor. Note that �0

S�0� � �0
S;ad�0�.

General error bound.—Let d (�) denote distances in the
joint (system) Hilbert space. To quantify the deviation of
the actual evolution from the desired one, let
 

�S �D��S�T�;�
0
S;ad�T��; dD �D���T�;�0�T��

dad �D��0�T�;�0
ad�T�� � �ad; dtot �D���T�;�

0
ad�T��:

The overall objective is to minimize the distance �S be-
tween the actual system state and the ideal, noise-free
adiabatic system state. The distance between the un-
coupled joint state and the ideal adiabatic joint state is
dad, which equals �ad since kA 
 Bk1 � kAk1kBk1 and
k�0

Bk1 � k�
0
Ck1 � 1. The ‘‘decoupling distance’’ is dD:

the distance between the joint state in the coupled and
uncoupled settings. Minimization of this distance is the
target of the DD procedure. Finally, dtot is the distance
between the actual and ideal joint states.

Because taking the partial trace can only decrease the
distance between states [2], we have �S � dtot. Using the
triangle inequality, we have dtot � dD � dad. Therefore,

 �S � dD � �ad: (3)

This key inequality shows that the total system error is
bounded above by the sum of two errors: (i) due to the
system-bath interaction in the presence of decoupling (dD);
(ii) due to the deviations from adiabaticity in the closed
system (dad). I shall present a procedure intended to mini-
mize dD jointly with dad. This is an optimization problem:
generically, decoherence (closed-system adiabaticity) wor-
sens (improves) with increasing T.

Dynamical decoupling.—I now show how to minimize
the decoupling error dD. To do so, I propose to apply strong

and fast dynamical decoupling (DD) pulses to the system
on top of the adiabatic evolution. It is convenient to first
transform to an interaction picture defined by Had �HB,
i.e., U�t� � Uad�t� 
UB�t� ~U�t�, where UX�t� �
T exp��i

R
t
0 HX�t0�dt0�, X 2 fad; Bg. Then ~U satisfies the

Schrödinger equation @ ~U=@t � �i ~H ~U , with ~H � UyB 

Uyad�HC �HSB�UB 
Uad � HC � ~HSB, where the second
equality required Eq. (2). Define an effective ‘‘error
Hamiltonian’’ Heff�t� via ~U�t� � e�itHeff �t�, which can be
conveniently evaluated using the Magnus expansion [18].
Now consider a sequence of nonoverlapping control
Hamiltonians H�k�DD�t� applied for duration w (pulse width)
at pulse intervals �, i.e., HC�t� � 0 for tk � t < tk�1 � w
and HC�t� � H�k�DD for tk�1 � w � t < tk�1, where tk �
k��� w�, k 2 ZK. The sequence fH�k�DDg

K�1
k�0 defines a

‘‘DD protocol’’ with cycle time Tc � K��� w� and uni-
tary pulses Pk generated by ~H�t� � H�k�DD �

~HSB, tk�1 �
w � t < tk�1. In the ‘‘ideal pulse limit’’ w � 0, one
defines the ‘‘decoupling group’’ G � fGk �
PK�1 � � �Pk�1PkgK�1

k�0 such that G0 � IS. Then, the
total propagator becomes ~U�Tc� �QK�1
k�0 exp��i��Gyk ~HSBGk�� � e�iTcH

id
eff , where Hid

eff de-
notes the resulting effective Hamiltonian, with Magnus
series Hid

eff �
P
1
j�0 H

id�j�
eff [8]. To lowest order

 Hid�0�
eff �

1

K

XK�1

k�0

Gyk ~HSBGk � �G� ~HSB�: (4)

In the limit �! 0, one has Hid
eff � Hid�0�

eff , so that by prop-
erly choosing G, one can effectively eliminate HSB.

Returning to nonideal (w> 0) pulses, we have shown by
use of k�A;B�k1 � 2kAkkBk1 and the Dyson expansion
that minimization of the ‘‘error phase’’ ��T� �
T k Heff�T� k implies minimization of the decoupling dis-
tance dD [19]:
 

dD � min�1; �e� � 1�=2�

� � if � � 1: (5)

For single-qubit systems, we and others have shown that
concatenated DD pulse sequences can decrease � expo-
nentially in the number of concatenation levels [20]. Here,
I focus on periodic pulse sequences for simplicity. In
periodic DD (PDD), one repeatedly applies the DD proto-
col fH�k�DDg

K�1
k�0 to the system, i.e., HC�t� lK� � HC�t�, l 2

ZL. The total time is thus T � L��� w�, where the total
number of pulses is L and the number of cycles is L=K. A
calculation of the total error phase ��T� proceeds in two
steps. First, we find an upper bound �l on �l�Tc� for the
lth cycle, using the Magnus expansion. Then, we upper
bound ��T� by �L=K�maxl�l. Let J �k HSB k (system-
bath coupling strength), � �k Had �HB k� �S � �B,
where �S �k Had k and �B �k HB k , and � � O�1� a
constant. A worst case analysis yields [21]
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 ��T� �
��JT�2

L=K
�

JTw
�� w

� JT
�
exp�2�Tc� � 1

2�Tc
� 1

�
:

(6)

This bound is valid as long as the third term is � JT and
the Magnus series is absolutely convergent over each
cycle, a sufficient condition for which is JTc < 	 [18,21].

Joint AQC-DD optimization.—Recall Eq. (1) for closed-
system adiabaticity. The given and fixed parameters of the
problem are J, �0, and z (or �). The task is to ensure that
each of the terms in Eq. (6) vanishes as a function of n. I
show in [22] that if � and w scale as

 �	 n����
1�=�0; w	 n��2��
1�
2�=J; (7)

with 
1 > 1 and 
2 > 0, then

 dD & �J=�0�
2n�
1 � n�
2 � �J=�0�n

1�
1 ; (8)

which is arbitrarily small in the large n limit. Combining
this with the bounds above (�ad < r�2 or �ad < r�N) and
inequality (3), it follows that for an AQC algorithm with
time scaling as T � L��� w� 	��1

0 n� , the total error �S
can be made arbitrarily small. This is the first main result of
this work: using PDD with properly chosen parameters, we
can obtain arbitrarily accurate AQC.

However, there is a shortcoming: the pulse intervals and
widths must shrink with n as a power law, with an exponent
dictated by the dynamical critical exponent z of the model
[Eq. (7)]. I expect that this can be remedied by employing
concatenated DD [20,21].

Seamless AQC-DD.—The entire analysis relies so far on
the ‘‘noninterference’’ condition (2). When can it be sat-
isfied? Fortunately, the general background theory was
worked out in [9,10], though without any reference to
AQC. I review this theory and make the connection to
AQC explicit. The decoupling group G induces a decom-
position of the system Hilbert space H S via its group
algebra CG and its commutant CG0, as follows:

 H S 

M
J

CnJ 
 CdJ ; (9)

 CG 

M
J

InJ 
MdJ ; CG0 

M
J

MnJ 
 IdJ : (10)

Here, nJ and dJ are, respectively, the multiplicity and
dimension of the Jth irreducible representation (irrep) of
the unitary representation chosen for G, while IN and MN
are, respectively, the N � N identity matrix and unspeci-
fied complex-valued N � N matrices. The adiabatic state
is encoded into (one of) the left factorsCJ � CnJ ; i.e., each
such factor (with J fixed) represents an nJ-dimensional
code CJ storing logdnJ qudits. The DD pulses act on the
right factors. As shown in [9], the dynamically decoupled
evolution on each factor (code) CJ will be noiseless in the
ideal limit w, �! 0 if �G�S�� �

L
J�J;�InJ 
 IdJ for all

system operators S� in HSB, whence Hid�0�
eff �

L
J��InJ 


IdJ ��S 
 �
P
��J;�B��B. Thus, assuming the latter condition

is met, under the action of DD, the action of Hid�0�
eff on the

code CJ is proportional to InJ , i.e., is harmless. Quantum
logic, or AQC, is enacted by the elements of CG0.
Dynamical decoupling operations are enacted via the ele-
ments of CG. Condition (2) is satisfied because
�CG;CG0� � 0.

Stabilizer decoupling.—An important example of the
general CG=CG0 construction is when G is the stabilizer
of a quantum error correcting code and the commutant is
the normalizer N of the code [12]. Because a stabilizer
group is Abelian, its irreps are all one-dimensional. A
stabilizer code encoding n qubits into nJ � k has n� k
generators, each of which has eigenvalues �1. Then, J
runs over the 2n�k different binary vectors of eigenvalues,
meaning that H S 


L
J�f�1;:::;�1gC

2k , and each of the
subspaces in the sum is a valid code CJ. Here, the elements
of N are viewed as Hamiltonians. For this reason, only the
encoded single-qubit normalizer operations are required;
encoded two-body interactions are constructed as tensor
products of single-qubit ones.

Energy-gap protection.—Application of DD pulses is
the main mechanism I propose for protection of AQC,
but it has a shortcoming as noted above. Fortunately, the
formulation presented here easily accommodates the AQC
energy-gap protection strategy proposed in [13], which can
be viewed as adding another layer of protection for dealing
with finite-resource-DD. Namely, if the decoupling group
G is also a stabilizer group for code CJ, then for each Pauli
error S� in HSB, there is at least one element Pj 2 G such
that fPj; S�g � 0, and otherwise �Pj; S�� � 0 [12]. We can

then add an energy penalty term HP � �EP
PjGj�1
j�1 Pj 2

CG to HS, where EP > 0 is the penalty. Imperfect decou-
pling means that Hid�j�1�

eff � 0. To lowest order, Hid�1�
eff �P

�S� 
 B
�1�
� , and an ‘‘erred state’’ will be of the form

j ?� i � S�j i, where j i � Pjj i 2 CJ 8 j. Then
HPj ?� i � f�a� �K � 1���K � 1�EPgj ?� i, where a is
the number of stabilizer elements that anticommute with
S�. Thus, j ?� i is an eigenstate of HP and has a�K � 1�EP
more energy than any state in the code space.
Reference [13] showed, using a Markovian model of qubits
coupled to a photon bath, the important result that this
energy gap for erred states implies that the temperature
need only shrink logarithmically rather than polynomially
in the problem size. However, note that to deal with generic
system-bath interactions both the stabilizer and normalizer
elements must involve k-local interactions, with k > 2
[13].

2-local decoherence-resistant universal AQC.—First,
recall a recent universality result. The following simple
2-local Hamiltonian allows for universal AQC [23]:
Huniv

ad �t��
P
i;�2fx;zgh

�
i �t��

�
i �

P
i;j;�2fx;zgJ

�
ij�t��

�
i �

�
j . With

this, all the tools have been assembled to demonstrate the
second main result of this work: a stabilizer decoupling
procedure against 1-local noise that uses only 2-local
interactions. By 1-local noise, I mean the main nemesis
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of quantum computing, namely, the linear decoherence
model: Hlin

SB �
P
��x;y;z

Pn
j�1 �

�
j 
 B

�
j , where fB�j g are ar-

bitrary bath operators. To beat Hlin
SB, use the Abelian ‘‘uni-

versal decoupling group’’ [8] Guni � fI; X; Y; Zg, where
X�Y; Z� �

Nn
j�1 �

x�y;z�
j . It is simple to verify that

�Guni
�Hlin

SB� � 0. As noted in Ref. [9], Guni is the stabilizer
of an [[n, n� 2, 2]] stabilizer code C, whose code words
are fj xi � �jxi � jnot xi�=

���
2
p
g, where x is an even-weight

binary string of length n, with n even. For example, for n �
4, we find: j00iL � �j0000i � j1111i�=

���
2
p

, j10iL �
�j0011i � j1100i�=

���
2
p

, j01iL � �j0101i � j1010i�=
���
2
p

,
j11iL � �j1001i � j0110i�=

���
2
p

. Now universal AQC over
C can be implemented using 2-local Hamiltonians. To
compute over C, we replace each Pauli matrix in Huniv

ad by
its encoded partner. Encoded single-qubit operations for C
are the 2-local �Xj � �x1�

x
j�1 and �Zj � �zj�1�

z
n, where j �

1; . . . ; n� 2. The 2-local interactions �xi�
x
j and �zi�

z
j ap-

pearing in Had are replaced by the 2-local �Xi �Xj �
�xi�1�

x
j�1 and �Zi �Zj � �zi�1�

z
j�1. Thus, we see that univer-

sal AQC can be combined with DD using only 2-local
�xi�

x
j and �zi�

z
j interactions over C.

Examples of promising QC implementations where X, Z
(as pulses for DD) and �xi�

x
j , �

z
i�

z
j (as Hamiltonians for

AQC) are available and controllable, are systems including
capacitive coupling of flux qubits [24] and spin models
implemented with polar molecules [25]. Also note that in
principle, as discussed above, we can create an additional
energy gap [13] against single-qubit errors by adding a
penalty term HP � �EP�X� Y � Z� to the system
Hamiltonian. However, HP is an n-local interaction.

Conclusions and outlook.—Using a combination of vari-
ous tools in the arsenal of decoherence control, I have
shown how to protect AQC against decoherence. While I
believe that the methods proposed here should significantly
contribute towards the viability and robustness of AQC,
what is still missing is a threshold theorem for fault tolerant
AQC. This will most likely require the incorporation of
feedback, in order to correct DD pulse imperfections and
other control noise [17]. One possibility for doing so might
be to perform syndrome measurements on the commutant
factor [CdJ in Eq. (9)] as in recent circuit-model fault
tolerance work using subsystems codes [7].

Important discussions with K. Khodjasteh, A. Hamma,
and P. Zanardi are gratefully acknowledged. Supported
under NSF Grant No. CCF-0523675.
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