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Robust transmission of non-Gaussian entanglement over optical fibers
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We show how the entanglement in a wide range of continuous variable non-Gaussian states can be preserved
against decoherence for long-range quantum communication through an optical fiber. We apply protection via
decoherence-free subspaces and quantum dynamical decoupling to this end. The latter is implemented by
inserting phase shifters at regular intervals A inside the fiber, where A is roughly the ratio of the speed of light
in the fiber to the bath high-frequency cutoff. Detailed estimates of relevant parameters are provided using the
boson-boson model of system-bath interaction for silica fibers and A is found to be on the order of a millimeter.
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I. INTRODUCTION

Gaussian entangled states of two subsystems are well
studied in the quantum communication and information lit-
erature. These states are often encountered in quantum com-
munication experiments. However non-Gaussian entangled
states are also important in the context of quantum commu-
nication. For example, such a communication system may be
constructed in two steps [1]: (a) encoding based on product
states of Gaussian states, (b) decoding based on measure-
ment on this continuous set of Gaussian states. During de-
coding, one must generate superpositions of input Gaussian
states, which are essentially non-Gaussian states. Thus quan-
tum communication systems may require non-Gaussian
states. Moreover, it is impossible to achieve a quantum
speedup using only harmonic oscillators and corresponding
Gaussian operations [2]: the dynamics of such a system can
be efficiently simulated classically. This, in turn, means that
to gain a quantum advantage in this scenario, one needs to
use non-Gaussian operations. It has also been shown that the
distillation of entanglement from two Gaussian entangled
states is impossible using only local Gaussian operations and
classical communication [3]. Thus, both quantum speedup
and distillation of entanglement, which have a close relation-
ship with quantum error correction, require non-Gaussian
operations. Recently there have been a few proposals to de-
tect entanglement in such non-Gaussian states [4—6].

In this work we focus on the problem of preserving non-
Gaussian entanglement in noisy quantum communication
channels. There have been several proposals based on quan-
tum purification protocols and quantum repeaters to commu-
nicate entangled photonic qubits over long distances [7-9].
Alternatively, entanglement between distant nodes can be
prepared by measurements along a chain of intermediate par-
ticles [10,11]. The problem we address here is quite differ-
ent: rather than setting up remote entanglement between dis-
tant nodes, we consider the problem of transmitting
entangled field states for a long distance along an optical
fiber. Specifically, we propose a method that preserves the
multiphoton entanglement of a class of non-Gaussian states
transmitted through an optical fiber. Most optical fibers are
known to have minimum loss windows at wavelengths of the
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order of a few microns. The optical frequencies generally
suffer attenuation inside such a fiber. This loss adds to other
decoherence processes, which degrade the fidelity of en-
tanglement transmission. We propose a hybrid approach to
control decoherence of optical-frequency non-Gaussian
states inside an optical fiber. Specifically, we utilize
decoherence-free subspace (DFS) [12] and quantum dynami-
cal bang-bang (BB) decoupling [13] protection to preserve
non-Gaussian entanglement. The DFS protection is used
against differential dephasing of the two field modes used to
construct non-Gaussian entangled states. The BB process is
applied in order to deal with the remaining relevant decoher-
ence sources, in particular, Raman scattering. This is done by
inserting phase shifters at regular intervals along the length
of the optical fiber, similarly to the proposal in Ref. [14]
where this spatial BB procedure was used to protect single-
photon polarization states transmitted through optical fibers.
In this manner we provide an application of the general hy-
brid DFS-BB strategy proposed in Ref. [15] (see also Ref.
[16]).

The structure of the paper is as follows. In Sec. II, we
introduce a class of non-Gaussian states and model their in-
teraction with an optical fiber. In Sec. IIl, we describe in
detail a hybrid approach to eliminate their decoherence dur-
ing transmission through an optical fiber. In Sec. IV, we pro-
vide a numerical estimate of loss of entanglement through a
realistic fiber using a boson-boson model of interaction be-
tween the field and the fiber.

II. INTERACTION MECHANISM OF NON-GAUSSIAN
ENTANGLED STATES WITH FIBER

A. A class of two-mode non-Gaussian states
and their entanglement

The simplest examples of non-Gaussian states of the elec-
tromagnetic field are the single-photon states. Other ex-
amples are states generated by excitations of a Gaussian state
[17,18]. Another method to produce non-Gaussian states uses
state reduction [19-21]. A recent experimental proposal dis-
cusses how to generate non-Gaussian states by subtracting a
photon from each mode of a two-mode squeezed vacuum
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state [22]. We consider non-Gaussian entangled states |¢) of
two field modes a and b (a and b are bosonic annihilation
operators), produced by subtracting p(>0) photons from one
of the modes (say, a) of a squeezed vacuum state |¢), given
by
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where { is the complex squeezing parameter and P is the
normalization constant. This state is non-Gaussian in the
sense that its Wigner representation W(a,B) is a non-
Gaussian function of « and S;
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Here [, represents the confluent hypergeometric function.
Note that for p=0, the state becomes Gaussian.

The entanglement in this state can be verified by the
Peres-Horodecki criterion [23]. We find that the density ma-
trix of the state |) under transpose of the b mode transforms
into

o
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Considering the 2 X2 dimensional block of the above den-
i , it is easy to

calculate the eigenvalues of o as
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FIG. 1. Variation of negativity N with the squeezing parameter
|| for p=1.
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Existence of negative eigenvalues of the matrix o reflects
that the state |¢) is entangled. The negativity N [24] of the
state |#) can be written as

N_ _E E |£|n+m+2p (n+p)'(m+p)‘

n=0 m#n nlm!

. ®

which is the absolute sum of all negative eigenvalues of the
density matrix o. The nonzero value of A reflects that the
state is entangled. Deviation of the value of A/ from zero is a
measure of the degree of entanglement. It is thus clear from
Fig. 1 that the two modes become more entangled with in-
creasing values of |{].

B. Model of interaction with an optical fiber

We assume that the state |} is transmitted through an
optical fiber of length L and thereby interacts with the fiber
modes, which leads to decoherence of the state. An optical
fiber consists of many dielectric molecules, each of which
contains many electronic energy levels. The interaction of
the input field states with the fiber can thus be reasonably
described by a molecule-field interaction Hamiltonian.
Dominant decoherence mechanisms are phase damping and
energy exchange between the field and the molecules.

The exchange processes can be expressed via the follow-
ing Hamiltonian under the rotating-wave approximation:

=> (AlB;+H.c.), ©)

where A; describes the field operators and B; describes the
molecular operators. Here the molecules in the fiber act as
the bath, leading to decoherence.

The exact form of the field operators A; in the above
Hamiltonian depends upon the model of the interaction. For
example, if the field modes are at near resonance with the
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single-photon transition in the molecules, dipole coupling
between them leads to A;=a,b. Dipole coupling dominates
higher-order coupling (e.g., quadrupole coupling or magnetic
dipole coupling), which would lead to multiphoton pro-
cesses. Thus, at near resonance, single-photon absorption by
the molecules leads to decoherence. Clearly, far from single-
photon resonance, higher-order processes can dominate. In
light of these considerations, we assume that the frequencies
of the two field modes are so chosen that two-photon pro-
cesses may occur in the system, while the cross section of
single-photon processes becomes negligible. Specifically, we
choose the frequencies of the field modes to be much smaller
than the energy gaps between the ground and first excited
electronic states.

There are two different kinds of two-photon processes
that may occur in a molecule: annihilation (creation) of two
photons described by a?, b?, and ab (a'?, b, and a'b"), and
photon-number conserving processes (described by a'b, ab’,
a'a, and b'b). If we assume the molecules are in their elec-
tronic ground states (at low temperature, as discussed later),
the process of absorption of two photons of two orthogonal
modes is disallowed due to certain selection rules [25].
Moreover, as both modes propagate in the same direction
through the fiber, Doppler shift of the photon frequency
causes the absorption processes of two photons in the same
mode to be off resonance [25]. Thus, we are led to a situation
where most of the molecular levels are resonant with the
second kind of two-photon transitions. This means that low-
energy scattering of the photons, namely, Raman (described
by a’b and ab’) and dephasing processes (described by the
number operators n,=a'a and n,=b'b, which is equivalent
to Rayleigh scattering), are most likely to occur inside the
fiber. In this case, we can write the effective interaction
Hamiltonian in the rotating-wave approximation as

H;=> g/(a'bB; + ab'B) + > (Tin,+ Finb)BLh
=H" +H?, (10)

where B; is the annihilation operator that corresponds to rel-
evant transitions of the ith molecule in the fiber, g;’s are the
coupling strengths, Bf)h is the dephasing operator for the ith
molecule (the exact form of this will be discussed later), and
I, and I', are the respective dephasing rates of the two
modes a and b.

III. HYBRID APPROACH TO ELIMINATE
DECOHERENCE

A. Decoherence-free subspace against differential dephasing

In this section we discuss a hybrid approach to suppress
these two-photon processes, i.e., how the effect of the inter-
action Hamiltonian (10) on the state |¢) can be eliminated.
We start with the dephasing processes described by the num-
ber operators n,=a'a and n,=b"b. We rewrite the dephas-
ing part of the Hamiltonian (10), Ei(Fflna+F2n,,)B;h, in terms
of two collective operators
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A.=n,+n, (11)

as S(I"A_+ FiAJr)B;h, where I'.=(I"' +T",)/2. Note that the
two-mode number states |n,n+p) and |n+p,n) are eigen-
states of the operator A_=n,—n, for all integers p=0. Thus
these states form manifolds of decoherence-free subspaces
with respect to differential dephasing for a given p. In any
manifold {|n,n+p)} (p fixed), any arbitrary superposition of
all possible states is also a decoherence-free state [12]. In
this way, in the present case the state |#) is a DFS under the
action of collective dephasing A_. Note that this protection
does not require encoding, in contrast to the usual construc-
tion of decoherence-free subspaces [12].

B. Bang-bang decoupling of the Raman process

As a second layer of protection of the state against other
decoherence processes (described by Raman interactions),
we now follow the general hybrid DFS-BB method proposed
in Ref. [15]. In the standard BB decoupling methods [13],
one uses very short pulses so as to cancel the effective inter-
action Hamiltonian. Thus one ends up with only that compo-
nent of the total Hamiltonian of system and bath, which com-
mutes with the BB pulses. If the pulses are appropriately
chosen, entanglement generation between the system and
bath states can thus be prevented, and decoherence of the
system is prevented. However, one has to apply the pulses in
intervals shorter than the time scale of decay of the bath
correlation. A recent proposal [14] uses a spatial, rather than
temporal version of this idea to overcome decoherence of a
single-photon polarization state in optical fibers. Reference
[14] shows how to replace the short time-dependent pulses
with phase shifters at regular intervals. Our approach here is
similar except that we deal with non-Gaussian entanglement
rather than single-photon states, and introduce a hybrid
DFS-BB approach. In this way entanglement can be trans-
mitted over a long distance in quantum communication sys-
tems.

Let us start with the total system-bath Hamiltonian in the
form

H=H,+H,,

Hy=hwoyn, + hopn, + Hg, (12)

where w, ;, are the frequencies of the two field modes, Hp is
the free Hamiltonian of the molecular bath, and H; is given
by Eq. (10). The frequencies w,  are chosen so that they are
off resonant with single-photon transitions, but possibly reso-
nant with Raman transitions in the fiber molecules. Here and
below we omit the zero-point energies when writing oscilla-
tor Hamiltonians.

The initial state is |Wo)=|¢)|M), where |¢) is the input
non-Gaussian entangled state and |M) is the state of the bath
(for simplicity we use a pure-state notation also for the bath;
below we consider the effect of the bath’s state more care-
fully). At the time 7,=L/v—where L is the length of the
fiber, and v is the average speed of light in the fiber—the
total wave function is [W(7;))=U(7,,0)|¥) (the f subscript
stands for “free evolution”). Here the exact normal-ordered
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propagator is  UA7;,0)=:exp{~iJ C[H(x)+Hy(x)]dx}:  (in
units where =1). Now, let 7=A/v, and let N=L/A>1 so

that we can expand the propagator as Ug7.,0)
~ e—iH(NA)T, . ,e—iH(ZA)Te—iH(A)T’ where
_ 1 — —
H(kA) = Kf(k . [Ho(x) + H/(x)]dx = Hy(kA) + H/(kA)

(13)

is the average Hamiltonian over the kth segment. That is, we
have neglected deviations from average fiber homogeneity,
S =((H(kA)-[H,(kA)+Hy(kA)])*) (we discuss such devia-
tions in Sec. IV). The spatial dependence of H, can come
from the bath self-Hamiltonian Hp, while that of H; can
come from the coefficients g; and F;’b [Eq. (10)]. Therefore

Hy(kA) = fiwn, + Frwyn, + Hg(kA),
H(kA) =) gi(a'bB;+ab'B]) + 2 (T n, + Tyny)Bly,

= HV(kA) + HP (kD). (14)

Moreover, in Sec. III C below, we argue that Hp is effec-
tively a molecular oscillator Hamiltonian, so that Hyz(kA)
=2, where Qs:i ’(‘kA_ pafd(x)dx is an average fre-
quency in an s-phonon state.

To eliminate the Raman processes dynamically, we pro-
pose the use of phase shifters defined by the following op-
erator:

= eiﬂT(na—nb)/Z — HT’ (15)

which generates a relative phase of 7 between the two
modes (alternatively we can define II as ¢/™a or as e/™»).
When these phase shifters are incorporated inside the fiber at
intervals A, the Raman interaction part in the Hamiltonian
(10) effectively vanishes. This occurs because of the follow-
ing identities. First, it is simple to show, using the Baker-
Campbell-Hausdorff (BCH) formula [26] that

e Pagtemima = ¢1bqt ol PageiPa = ~itg (16)

and similarly for n; and b. Therefore

HaTbHT — (eiﬁnn/Zan —i‘n'na/Z)(e—i‘n'nb/Zbeimlb/Z) —_ aTb,

(17)

Hab'{'n'j‘ - (eimla/Zae—iwna/Z)(e—iﬂ'nb/Zb'}'eiﬂ'nb/Z) —_ ab'i“ )
(18)

These identities imply that the Raman interaction is effec-
tively time reversed every 2A due to the action of the phase
shifters. To show the utility of this result note first that

AT = Hy- HD + HP, (19)

because the field term of H, and H;z) obviously commute
with II and because averaging commutes with the phase-
shifter operation. Now, if we install thin phase shifters inside
the fiber at positions x=0,A,2A,..., from A to B, the evolu-
tion will be modified to
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U(r,,0) = e-iﬁ(NA)T___H e—if_l(zA)rH e—il}(A)rH. (20)

Note that in writing this expression we have neglected the
variation of H inside the phase shifter; this will hold pro-
vided that the phase-shifter width is much smaller than the
distance over which deviations &, from average fiber homo-
geneity become significant. Now assume that the average
Hamiltonians over two successive segments are equal;

H[(k+ 1)A]=HD(kA), i=1,2,

Ho[(k+ 1)A] = Hy(KkA). (1)

The better this approximation, the better our hybrid DFS-BB
method will perform; we address deviations in Sec. IV. In
this case, to first order in 7 and using Egs. (19) and (20), we
have exact cancellation of Hf,l) between successive segments,

o iHIU DAL =i HKA) T[] = p=iHI (et DA]7 ,~iTIH(kA)IT7
= oGk H] (A +H P (kA)]
oM kA)-HD (kA HP (k)]
= 2k +H )7 (22)

where the smallness of 7 is the justification for adding the
arguments of the two exponentials in obtaining the last line.
Using Eq. (21) again, this yields the overall evolution opera-
tor

HP(W)]

U(7,0) = e~imilfo(Lr+ (23)

Thus, to first order in 7 (or the interphase shifter distance
A), we have eliminated the Raman term I-_I(LI ), and are left
with the dephasing term Ijllng,-(F_A_+I‘+A+)B;h, as H,
causes no decoherence. Considering EIZ_), we note that the A_
component yields only an overall phase on the state |¢). In
fact, the DFS corresponding to A_ remains invariant under
the action of II as IT obviously commutes with A_. There-
fore, the overall evolution operator reduces to

U(7;,0) = e_iTL(H_O+2iﬁA+BLh) , (24)

(where averages can be considered as being evaluated at L)
and our remaining task is to eliminate the collective dephas-
ing term (proportional to A.). However, it turns out that it is
impossible to do this with BB while using only linear optical
elements. Fundamentally, the reason for this is that the group
generated by {n,—n,,a’b,b’a} (phase shifters and beam
splitters) is noncompact, which means that it can at most
apply a dilation but not a sign change, as required for time
reversal in the BB protocol. However, as we argue next, the
collective dephasing term nevertheless has no significant ef-
fect on the preservation of non-Gaussian entanglement.

C. Suppression of collective dephasing

In the low temperature limit, most of the molecules in
each segment of length A reside in their ground electronic
states. In thermal equilibrium, the molecular vibrational
states obey Maxwell-Boltzmann statistics. The state of the
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molecular bath can be well described by a density
matrix pg=3p| b P, where p,=exp(—-E,/kzT)/Z is the
Boltzmann probability of an s-phonon excitation with
energy E,=hQ,, kg is the Boltzmann constant, and Z
=3 exp(=E,/kT) is the partition function, and |¢,) is the
s-phonon excited state. This is equivalent to the assumption
that the molecular Hamiltonian Hjy is an oscillator Hamil-
tonian, i.e., Hz=> Qs (s is the phonon number operator),
as mentioned in the previous subsection. Moreover, we as-
sume that the field couples to the molecular vibrations. Then
[HB,B;h]:O and hence E,‘B;h|¢s>:s|¢s>. Under these as-
sumptions we have that [H,,A +Bi)h]=0, and hence the effect
of the pulse operator (24) on the initially uncorrelated
system-bath state can be written as

pSB(TL’O) =~ U(TLaO)(|l/’><'ﬁ| ® PB)U%(TL’O)

— E pve_iTLH_oe_iTLF_*SA*'

s

X ([N ® |p ) | eitHoei T ods - (25)

Using the expression (1) for |¢), we find, after tracing out the
bath, that the state of the field modes at the final time 7;
becomes

1 § | !
p(TL) = ?; psz §n+Pé"(m+p) W

n,m

X e—iTL[wtot+2F+s](n—m)|n’n +p><m’m +p

. (26)

where w,,=w,+w,. The fidelity of this state can be calcu-
lated as

F(7) = <¢|P(TL)|¢>

— #EY P, % |§|2(n+p)%e—iTLn(wwﬁZFg) ?
(27)
which becomes unity if
7=l wg + 2T, s}, (28)

where [ is an integer. In this expression 7; is, of course, a
function of the summation variable s, while in reality there is
only a single 7;,. However, we observe that there are two
physical limits where this dependence of 7; on s disappears.
Namely, if w,<I", then for /=s we find that 7 becomes s
independent. In the opposite limit of very weak collective
dephasing we also find that 7 is s independent (there is
a physical upper limit on s in the Gibbs state pp
=3 p,|,){#,|). Both limits can be realized by controlling the
field modes w, . Alternatively, in the low temperature limit
the sum over s in Eq. (27) is dominated by the vibrational
ground state, and again the fidelity is unity if 7=I17/ w.

While the fidelity is generally reduced and recovers its
initial value of unity only under certain conditions, we next
show that the non-Gaussian entanglement can be preserved
provided one knows the value of I',. At the exit end of the
fiber, the state of the two modes is given by p(7;,0) [Eq.
(26)]. Taking the partial transpose over the mode b in this
state, we obtain
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plr)Th= 23 .3, grong [ UL L)
nim:

s n,m
X el @ect 201y 1y 4 pNmn + p|. (29)
The eigenvalues of this matrix are given by

|2<n+p>M
!

1
Mn=;|§ Y n,

1
Npm= % ﬁvnm(TLr+)|§|n+m+2p

W AJUERREDY L 30)
n'm!

where we have defined the phononic visibility factor as

2 pse—2ixs(n—m) ) (3 1)

VplX) =

For a harmonic oscillator bath this factor can be evaluated
analytically, using E;=AQ(s+1/2);
E e—[ﬁﬂ/kBT+2ix(n—m)]s

1
—-hQ2kgT
Unm(x) = Ee B
5s=0

_ L
27z

1
sinh[AQ/2kpT + ix(n —m)] |’

(32)

which is an oscillatory function of its argument x, with pe-
riod 7/ (n—m).
The negativity at the fiber’s end becomes

N=53 S (L lgpmar [ LD P)
P n'm!

n=0 m#n
(33)

Comparing this expression to Eq. (8), it is apparent that the
negativity is reduced due to the phononic visibility factor.
The condition for this factor to become unity is

r=a/l,, (34)

which can be satisfied provided one knows the value of T',.
One way to extract this value is, in fact, to apply our BB
protocol and to test the fidelity of the state via quantum state
tomography (see (Ref. [27] for a more general method relat-
ing BB to tomography). Also note that in the low tempera-
ture limit, where the sum over s involves only a small num-
ber of terms, the phononic visibility factor will still be close
to unity. On the other hand, it is clear that if neither condition
is met (7# /I, and high temperature) then the rapidly os-
cillating terms in the phononic visibility factor will destruc-
tively interfere and cause entanglement loss.

Note also that in absence of any BB control, the initial
state |¢) evolves through the interaction Hamiltonian (10).
This leads to different combinations of the photon numbers
in the two modes due to energy exchange with the molecular
bath. Thus the initial entanglement is destroyed at a length
scale A, corresponding to the dissipation time scale 7, of the
molecular bath.
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IV. EFFECT OF FIBER INHOMOGENEITY
ON DECOHERENCE

So far we have assumed that the average Hamiltonians
over two successive segments of length A are equal [Eq.
(21)]. However, due to possible inaccuracies in the place-
ment of the phase shifters, or inhomogeneity inside the fiber,
the average Hamiltonian differs between segments. In this
section, we show that this fluctuation of the average Hamil-
tonian leads to dissipation of the field and thus sets an upper
limit to the value of A. We follow and improve the method
described in Appendix A of Ref. [14].

A. Gaussian fluctuations model

The inhomogeneity in the fiber may arise due to nonuni-
form number density of the molecules or slow time depen-
dence of the fiber properties. In view of this, we modify the
assumption of homogeneity to read

H[(k—1)A]=H(kA) + 8(Hp), + 6(H));., (35)

where the operator-valued fluctuations 8(Hyg);, 8(H,); in the
Hamiltonian are independent. Here 8(Hp); is the fluctuation
in the bath-only Hamiltonian, and

8H)p), = 2 58?(01-531‘ + abTB:‘r)k

+ €2 (8yn, + STyn)Byy)  (36)

is the operator-valued correction to the interaction Hamil-
tonian in the kth segment, where 5gff and &(I'), (I=a,b) are
the fluctuations in the coupling coefficients in the kth seg-
ment, and e€<<1 is a proportionality constant defining the
strength of the fluctuations. We assume that e~ 7. These
fluctuations lead to losses inside the fiber. However, in an
amorphous silica fiber, the loss due to Rayleigh scattering
(i.e., due to terms containing n, and n,) is much greater than
the loss due to other mechanisms (e.g., due to Raman scat-
tering, i.e., due to terms containing a’b and ab’) [28]. With
this in mind, we neglect the fluctuations in the Raman terms
and henceforth consider only the effect of the fluctuations in
(I', ) Thus, in the interaction picture, with respect to the
energy term H+ 8Hpg(t), the interaction Hamiltonian corre-
sponding to the fluctuations in the kth segment of the fiber
can be written as

SH (1) = €25 [fu(Dhng + fy(0)n, ), (37)

where ﬂ(t) = 51“5(1‘)8;}1 (I=a,b) are the operator-valued fluc-
tuations for the ith molecule, and we have replaced the k
dependence with time dependence, in the joint limit 7—0
and total number N of segments large, such that 7, =N7 is
finite. Under the action of this Hamiltonian SH,(z), the evo-
lution of the field state can be described in the Born approxi-
mation by the following equation [29]:
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pr=—1Trg[ 6H,(1),pr(0) ® pp(0)]

—TYBJ {6H,(t),[6H(t"),pp(t") ® pp(0)]}, (38)
0

where the terms up to the second order of e(~7) have been
considered (as e<1). Now note that since A <L, the number
of segments of length A is much larger than unity. In this
limit, the fluctuations ﬂ(t) can be considered as described by
Gaussian operators [14]. Then it is reasonable to assume that
the two-time correlations of the form [I'(¢,¢')
E([Eiff(t)E}ff,(t’DB (I,I'=a,b) between these fluctuations
do not depend on a,b due to the symmetry properties of
Gaussian operators, while the mean (Eiff(t))B vanishes. Here
(X)p=Try[pp(0)X] denotes the average of any operator X
over the bath. Taking this average over Eq. (38) leads to the
vanishing of the term linear in 8H,(z), while using the ex-
pression for |#) [Eq. (1)] we obtain from the integral term

ae (! [(n+p)1om +p)!
= —— ar'T l,t/ n+p #*(m+p)
PF P2f0 ( )%( 4 I E—

X (n—m)?|n,n + p)m,m+p|. (39)

This can be solved for the matrix elements of pp, yielding

T t
(pF)n,n+p;m,m+p(TL) = expl_ 462(” - m)zf dtj le(t,t’)]
0 0

X (pF)n,n+p;m,m+p(0)’ (40)

where the initial state is

Lo i (n+p)!(m+p)!
(PF) nnspmmp(0) = ? g \/T

(41)

Let us assume that the molecular bath is in thermal equi-
librium at temperature 7. If 7—0, most of the molecules
reside in the ground electronic states. However, molecules
can be distributed in all the vibronic modes corresponding to
the ground states. The degeneracy of these vibronic states
can be lifted by phonon absorption due to molecular colli-
sions. In view of this, we treat the molecules as bosons inside
a fiber. As implied by our discussion in the previous section,
the dephasing operator E,-B;h can be written as (B'B),,
where (B),;, is the annihilation operator corresponding to
these vibronic states. Thus, the interaction of the field modes
with the molecules can be described by the so-called inde-
pendent oscillator (I0) model [30] of boson-boson interac-
tions. In this model, each of the oscillators of the passive
molecular bath is linearly coupled to the system oscillator.
This interaction is governed by two terms: (i) The Gaussian
fluctuations Z;f}(¢) of the bath operators, and (ii) a memory
function u(r) of the bath operators, which vanishes at nega-
tive times. If the correlation between fluctuations at different
times vanishes, the interaction reduces to a Markovian pro-
cess. However in general, this correlation is a nontrivial
function of time and thus corresponds to a non-Markovian
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process. It can be shown that the symmetric autocorrelation
of 2;f)(r) satisfies [30]

%<Zﬂ'(t)2f’}(t’) +2ﬂ,<r')2f;m>

1(” o ,
= ;L w coth( 2kBT)COS[w(t—t )]
XRel t(w + i0%) ldw, (42)

while correlations of an odd number of factors of =f)(t)
vanish. Here f(z) is the Fourier transform of the memory
function u(f). Due to the Gaussian property of Z.fj(7), as
discussed before, the above equals <Eif’,'(t)2jf’,(t’)>. The
memory function is independent of the potential and the
properties of the system and only depends upon the coupling
strengths of the field operators with the bath. In the 10
model, the coupling strength is an even function of the os-
cillator frequency and is of the form m jwjz-, where m; is the
mass of the jth oscillator and the w; is the frequency of the
Jjth oscillator mode. The spectral distribution of the memory

function is in the ohmic class and can be written as

Re[fi(w + i0%)] = mwle Y, m;. (43)
J

Here w,. is the cut-off frequency of the molecular bath
modes, and is introduced such that for large frequencies, the
memory function does not blow up. This is in conformity
with the passivity condition of the molecular bath, which
also requires that the bath modes must have an infinite spec-
trum and the memory function must not be a singular func-
tion of w [30]. Thus using Egs. (42) and (43), we can write
the following expression for the rate of dissipation at time 7;:

T t
F(TL)=I dtf dr'T(t,t")
0 0
* 3 fhow
= doww’e” % coth
0 2kyT
2 . wTL>
X4 = sin®| —= | 1, 44
{wz Sm( > } (44)

where we have normalized the memory function (43) in units
of mass. For low temperature (T—0), when the quantum
fluctuations dominate the thermal fluctuations, one can find
the actual loss figure as

2)c2(3 +x%)

I'(7) = w, 1+27° X= 7. (45)

Using the results for the unitary evolution (26) and the decay
of the density matrix elements given by Eq. (40), we find the
following expression for the density matrix of the field
modes at time 7;:
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1 (n+p)!(m+p)!
o n+p FH(mp) |22 L7V P
p(TL)dlss Pzg pY% g g n'm!

X e—iTL(wwt+2]—'+s)(n—m)e—4ezr(TL)(n - m)2

(46)

The eigenvalues of the matrix obtained by taking the trans-
position of the b mode in the above density matrix are given
by

(n+p)!
nn 2|§|2(n+p) | vV n,
1 —21TLF s(n—m) n+m+2p
= % 4
| |
X 4/ U +P);("T +P)_, e T =-m? n,m # n.
n.m:

(47)

Thus in the low temperature limit, we find the following
expression for the negativity:

[(n+p)!(m+p)!
n+m+2,
Ndiss P2 2 |§| r nlm!

nm#n

X 4T =m? (48)

where I'(7;) is given by Eq. (45). Clearly the negativity de-
creases as the field propagates through the fiber. Using the
expression (45) for I'(7;), we find that for x>1 (for 7,
>1/w,, i.e., on a time scale much larger than the bath cor-
relation time), the negativity does not decrease further and
saturates to Eq. (48) with I'(7;) replaced by w?. This satura-
tion is due to the fact that 1/w, is the time scale over which
information about the system state spreads in the bath; for
times much longer than this the bath is effectively stationary
and no more damage to entanglement in the system is pos-
sible via the bath. We next extract a distance scale for the
phase-shifter separations from these considerations.

B. Numerical estimates of the interphase-shifter distance

The result (45) due to fluctuation given by Eq. (36) leads
to an estimate of the spatial separation A between two suc-
cessive phase shifters. Note that for n=m (i.e., for diagonal
terms of the density matrix), this fluctuation does not lead to
any dissipation (or loss of entanglement), as is clear from Eq.
(40). But the larger is
other words, the largest off-diagonal contribution to the
negativity comes from the terms with |n—m|=1, which there-
fore are sufficient to give us the desired estimate of A. If we
allow an error probability &(7;) over the length of the fiber,
then a sufficient condition for the present result to be useful
is

e > 1 _ 5(7,). (49)

Rewriting the above using Eq. (45), we have
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( v2(1 +x%)?
4w§x2(3 +x%)
X—®

— == Inl1 - 8(m)] ',
2w,

In[1 - 5(7'L)]_1>1/2

(50)

where we have used e=7. The limiting value is attainable by
fixing A and letting the number of phase shifters N become
very large (long fiber), with w, given and fixed. This sets an
upper bound on the applicable value of A, which is essen-
tially the ratio of the speed of light in the fiber to the bath
high-frequency cutoff.

In the following, we present a numerical estimate in a
realistic situation, e.g., for an optical fiber with an amor-
phous silica core. The inhomogeneity in silica leads to fluc-
tuation as described above and thus decoheres the input
fields.

The Debye temperature @ =fiw,/kg of crystalline silica is
342 K, where o, is the maximum phonon frequency (fre-
quency “cutoff”) allowed inside the crystal. Thus, the life-
time 7. of phonons becomes of the order of 1/w,.. On the
other hand, in amorphous solids the Debye temperature and
the lifetime of phonons are not well defined. However, at low
temperatures T<<0®, there exist certain empirical relations
between them [31,32]. For example, at T=0.2 K, which cor-
responds to a phonon frequency of 2.62 X 10'° Hz, the life-
time of phonons is of the order of 107! s. We consider this
frequency of phonons as maximum frequency w. allowed
inside the fiber at 7=0.2 K.

It has been shown that long distance distribution of en-
tangled states of two qubits over a noisy quantum channel
can be achieved using entanglement purification protocols
[7.8]. These protocols can be improved in terms of the re-
quirement of physical resources as well as the error thresh-
old, if one uses quantum repeaters [9]. It has been shown that
for an error probability ~0.01 inside the communication
channel, quantum purification protocols work well when
combined with quantum repeaters. Although, as explained in
the Introduction, the setup of our problem is quite different
from that of quantum repeaters, for the sake of concreteness
we use the threshold figure from that scenario and conserva-
tively consider the case when the maximum error probability
&(1;) allowed through the fiber is 5 X 1072,

We consider a multimode fiber of length L=1 km. The
time of propagation of the fields through the fiber is 7
=5.33X107° s, where v:c/ng, ng:1.6 being the effective
group index of the field through the fiber. Using the param-
eters discussed above, we find from Eq. (50) A=<0.8 mm.
This means that the field sees the phase shifters at a time
interval 7 of 4.325X 10~'2 s which, as required for the BB
protocol, is much smaller than the time scale for bath dissi-
pation, 7,=1071"s. We show in Fig. 2 how the negativity
(48) varies inside the fiber for the parameters discussed here.
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FIG. 2. Variation of the negativity Ny with time in units of the
bath high-frequency cutoff, w.7; for a fixed squeezing parameter
|/=0.5 and p=1 accounting for (dashed line) and not accounting
for (solid line) the bath fluctuations. The other parameters are w,
=2.62X 10" Hz, 7=4.325X10"'%2s, and error probability 6=5
X 1072.

We find that the negativity becomes constant after a certain
length scale inside the fiber, as discussed before. This is be-
cause, in the presence of BB control, the effective contribu-
tion of bath fluctuations to the negativity vanishes at a time
scale when the bath correlation vanishes.

V. CONCLUSIONS

In conclusion, we have discussed in detail, how one can
preserve entanglement in a class of continuous variable non-
Gaussian states against decoherence caused by coupling to a
bosonic bath. Specifically, we have considered the transmis-
sion of an entangled state of two bosonic modes through an
optical fiber and developed a hybrid approach combining
decoherence-free subspaces and BB control to sustain the
entanglement. We described the non-Markovian interaction
with the bosonic bath consisting of molecules in the fiber and
provided a detailed estimate of the relevant parameters to
implement our approach in a realistic fiber. It turns out that
to achieve a loss figure of <5X 1072 in a 1 km fiber, phase
shifters should be placed about 1 mm apart. This appears to
be a technologically feasible requirement. Hence we expect
that the method proposed here will become a useful tool in
the effort to transmit non-Gaussian entangled states over op-
tical fibers.
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