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Theory of decoherence-free fault-tolerant universal quantum computation
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Universal quantum computation on decoherence-free subspaces and subsystems~DFSs! is examined with
particular emphasis on using only physically relevant interactions. A necessary and sufficient condition for the
existence of decoherence-free~noiseless! subsystems in the Markovian regime is derived here for the first time.
A stabilizer formalism for DFSs is then developed which allows for the explicit understanding of these in their
dual role as quantum error correcting codes. Conditions for the existence of Hamiltonians whose induced
evolution always preserves a DFS are derived within this stabilizer formalism. Two possible collective deco-
herence mechanisms arising from permutation symmetries of the system-bath coupling are examined within
this framework. It is shown that in both cases universal quantum computation which always preserves the DFS
~natural fault-tolerant computation! can be performed using only two-body interactions. This is in marked
contrast to standard error correcting codes, where all known constructions using one- or two-body interactions
must leave the code space during the on-time of the fault-tolerant gates. A further consequence of our univer-
sality construction is that a single exchange Hamiltonian can be used to perform universal quantum computa-
tion on an encoded space whose asymptotic coding efficiency is unity. The exchange Hamiltonian, which is
naturally present in many quantum systems, is thus asymptotically universal.
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I. INTRODUCTION

The discovery that information encoded over quant
systems can exhibit strange and wonderful computatio
@1,2# and information theoretic@3,4# properties has led to a
explosion of interest in understanding and exploiting
‘‘quantumness’’ of nature. For the use of quantum inform
tion to progress beyond mere theoretical constructs into
realm of testable and useful implementations and exp
ments, it is essential to develop techniques for preserv
quantum coherences. In particular, the coupling of a qu
tum system to its environment leads to a process known
decoherence, in which encoded quantum information is
to the environment. In order to remedy this problem act
quantum error correction codes~QECCs! @5–9# have been
developed, by analogy with classical error correction. Th
codes encode quantum information over an entangled s
code words, the structure of which serves to preserve
quantum information, when used in conjunction with a fr
quently recurring error correcting procedure. It has be
shown that when the rate of decoherence is below a ce
threshold, fault tolerant quantum information manipulation
possible@10–15#. Since it is believed that there are no sy
tems for which the decoherence mechanism entirely v
ishes, QECCs will be essential if quantum information m
nipulation is to become practical.

An alternative approach has been proposed and devel
recently, in which the central motivation is the desire to
duce the effect of a specific decoherence mechanism. Th
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the decoherence-free subspace~DFS! approach~also referred
to as ‘‘error avoiding,’’ or ‘‘noiseless’’ quantum codes! @16–
29#. In contrast to the active mode of QECC, DFS theory c
be viewed as providing a passive approach, where a spe
symmetry of the system-bath coupling is employed in or
to seek out a quiet corner of the system’s Hilbert spa
which does not experience decoherence. Information
coded here over a subspace of~usually entangled! system
states is robust against a specific form of decoherence.
shall refer to this as the ‘‘DFS supporting decoheren
mechanism.’’ When this is the dominant form of decohe
ence in the physical system, there are major gains to be
by operating in the DFS. Previous work has shown that c
lective decoherence of the type experienced in conden
phase systems at low temperatures can be successfully e
nated in this way@30,31#. Further research showed that DFS
are robust to perturbing error processes@24,27#, and are thus
ideally suited for concatenation in a QECC@25#.

A third approach to decoherence explored recently e
ploys dynamic decoupling@32–34# or related symmetriza-
tion procedures@35#. An interesting connection between a
three of these methods to combat decoherence~active, pas-
sive, and symmetrization! was established in Ref.@36#.

In this paper we address the problem of employing
decoherence-free subspace approach and generalizatio
this to perform quantum computation. The motivating go
behind the DFS approach is to use symmetry first. Thus
first identifies a DFS for the major sources of decoheren
via the symmetry of the interaction with the environme
One then proceeds to use the DFS states as a basis
QECC which can deal with additional perturbing error pr
cesses. In order for this scheme to be useful, DFSs m
support the ability to perform universal quantum compu

o,
©2001 The American Physical Society07-1
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tion on the encoded states. Towards this end, certain exis
tial results@37# have been derived showing that in princip
universal quantum computation can be performed on
DFS. Constructive results for a set of universal quant
gates on a particular class DFSs were subsequently
structed in@26# using known QECC constructions. Howeve
these gates were constructed in such a way that during
operation of the gate, states within a DFS are taken out
of this subspace. Thus these gates would necessarily ne
operate on a time scale faster than the DFS supporting d
herence mechanism, in order to be applied efficiently t
concatenated DFS-QECC scheme.1 Similarly, a universal
computation result on DFSs for atoms in cavities was
cently presented by Beigeet al. in @38,39#. It assumes tha
the interaction driving a system out of the DFS is mu
weaker than the coupling of non DF-states to the envir
ment. It is then possible to make use of an environme
induced quantum Zeno effect. In order to make use of
robustness condition without resorting to gates which can
made faster than the main DFS supporting decohere
mechanism, one would prefer to explicitly construct a se
Hamiltonians which can be used to perform universal qu
tum computation, but which never allow states in the DFS
leak out of the DFS. Imperfections in these gates may
dealt with by the concatenation technique of Ref.@25# ~see
also Ref.@28#!.

In addition, one would, from a practical standpoint, like
use Hamiltonians which involve at most two-body intera
tions ~under the assumption that any three-body interacti
will be weak and not useful for operations which must co
pete with the decoherence rate!. In @40# such Hamiltonians
were used for the important decoherence mechanism kn
as ‘‘collective decoherence,’’ on a system of four physic
qubits. In collective decoherence the bath cannot distingu
between individual system qubits, and thus couples in a
lective manner to the qubits. The corresponding two-bo
Hamiltonians used to implement universal quantum com
tation are those that preserve the collective symmetry. Th
consist of the exchange interaction between pairs of qub
The first and main purpose of this paper is therefore to
tend the constructive results obtained in@40# to other forms
of collective decoherence and to larger DFSs. Two differ
forms of collective decoherence are considered here,
constructive results are obtained for these on DFSs of a
trary numbers of qubits. These results have implications
extend far beyond the problem of dealing with collecti
decoherence. Since they imply that the exchange interac
by itself is sufficient to implement universal quantum co
putation on a subspace, it follows that using encoded~rather
than physical! qubits can be advantageous when resour
for physical operations are limited. After all, the standa
results for universal quantum computation employ either
bitrary single-qubit operations in addition to a nontrivi
two-qubit gate~e.g., a controlled-NOT!, or at least two non-
commuting two-qubit Hamiltonians@41–45#. The beginnings

1Note that QECC fault-tolerant gates are also required to ope
faster than the decoherence time of the main error process.
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of these issues are explored in a separate publication@46#.
Previous work established that DFSs correspond to

degenerate component of a QECC@25,47#. A second purpose
of this work is to present new results on a recently disc
ered generalization of DFSs, which has been termed ‘‘no
less subsystems,’’ and arises from a theory of QECC
general decoherence mechanisms@48,49#. In line with our
previously established terminology@24# we will refer to
these as ‘‘decoherence-free subsystems,’’ where we take
term ‘‘decoherence’’ to mean both dephasing (T2) and dis-
sipation (T1). Essentially, the generalization corresponds
allowing for information to be encoded into states transfor
ing according to arbitrary-dimensional irreducible repres
tations~irreps! of the decoherence-operators’ algebra, inste
of just one-dimensional irreps as in the decoherence-
subspace case~we will present precise definitions later in th
paper!. These results all arise from a basic theorem on al
bras that are closed under the Hermitian conjugation op
tion ~‘‘†-closed algebras’’!, and thereby unify the role o
symmetry in both decoherence-free subspaces and qua
error correction. In this paper we extend the decoheren
free subsystem concept to situations governed by essen
non-†-closed evolution. Such situations arise from no
Hermitian terms in the system-bath interaction, which m
occur, e.g., in generalized master equation and conditio
Hamiltonian representations of open quantum dynamics@50#.
In particular, we derive an if and only if~iff ! condition for
the existence of decoherence-free subsystems with dyna
governed by a semigroup master equation. This is impor
because it is well-known in decoherence-free subsp
theory that such non-†-closed evolution can support differ
DFSs than in the †-closed case. A similar result is n
shown here to hold for the decoherence-free subsystems

Existential results for universal quantum computation
decoherence-free subsystems also exist@36#. The universal
quantum computation results we obtain in this paper ext
beyond decoherence-free subspaces: we show how
achieve constructive universal quantum computation on
decoherence-free subsystems supported under collective
coherence. This most significant achievement of our pa
settles the question of universal quantum computation un
collective decoherence using realistic Hamiltonians.

Another aim of this paper is to elucidate the close li
between DFS and QECC. In@25,47# it was shown that DFSs
are in fact maximally degenerate QECCs. This result w
derived from the general condition for a code to be a QE
@8#. A very fruitful approach towards QECC has been t
stabilizer formalism developed in@9# which led to the theory
of universal fault-tolerant computation on QECCs@51#. In
@26# we considered DFSs as Abelian stabilizer codes. H
we generalize the stabilizer-framework tonon-Abelianstabi-
lizers, and show that in general DFSs are stabilizer-co
that protect against errors in the stabilizer itself. This p
spective allows one in return to view QECCs as DF
against a certain kind of errors, and establishes a kind
duality of QECCs and DFSs.

The paper is structured as follows: In Sec. II we revie
decoherence-free subsystems and place them into the co
of the Markovian master equation. For decoherence-free s
te
7-2
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THEORY OF DECOHERENCE-FREE, FAULT-TOLERANT . . . PHYSICAL REVIEW A 63 042307
spaces this has been done in@24,27#. These earlier results ar
therefore generalized here to subsystems. In Sec. III we
troduce a generalized stabilizer-formalism for DFS, and c
nect to the theory of stabilizers on QECC developed in@9#.
This allows us to treat DFS and QECC within the sa
framework. It also sheds some light on the duality betwe
DFS and QECC, in particular on the performance of a D
viewed as a QECC and vice versa. In Sec. IV we deal w
universal computation on DFS within both the stabilize
framework and the representation-theoretic approach.
derive fault-tolerance properties of the universal operatio
In particular, we show how to obtain operations that keep
states within a DFS during the entire switching-time of
gate. Further we define the allowed compositions of ope
tions and review results on the length of gate sequence
terms of the desired accuracy of the target gates. In Se
we introduce the model of collective decoherence. Sec
VI explicitly deals with the Abelian case of weak collectiv
decoherence in which system-bath interaction coupling
volves only a single system operator. Stabilizer and er
correcting properties are developed for this case, and
shown how universal computation can be achieved. T
same is done for the non-Abelian and more general cas
strong collective decoherence in Sec. VII. For both weak
strong collective decoherence we show how to fau
tolerantly encode into and read out of the respective DF
Finally, we analyze in Sec. VIII how to concatenate DF
and QECCs to make them more robust against perturb
errors ~as proposed in@25#! and show how the universalit
results can be applied to achieve fault-tolerant unive
computation on these powerful concatenated codes. We
clude in Sec. IX. Derivations and proofs of a more techni
nature are presented in the appendixes.

II. OVERVIEW OF DECOHERENCE-FREE SUBSPACES
AND SUBSYSTEMS

A. Decoherence-free subspaces

Consider the dynamics of a systemS ~the quantum com-
puter! coupled to a bathB via the Hamiltonian

H5HS^ IB1IS^ HB1HI , ~1!

whereHS (HB) @the system~bath! Hamiltonian# acts on the
system~bath! Hilbert spaceHS (HB), IS (IB) is the identity
operator on the system~bath! Hilbert space, andHI , which
acts on both the system and bath Hilbert spacesHS^ HB , is
the interaction Hamiltonian containing all the nontrivial co
plings between system and bath. In generalHI can be written
as a sum of operators which act separately on the sys
(Sa’s! and on the bath (Ba’s!:

HI5(
a

Sa ^ Ba . ~2!

In the absence of an interaction Hamiltonian (HI50), the
evolution of the system and the bath are separately unit
U(t)5exp@2iHt#5exp@2iHSt# ^ exp@2iHBt# ~we set\51
throughout!. Information that has been encoded~mapped!
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into states of the system Hilbert space remains encode
the system Hilbert space ifHI50. However, in the case
when the interaction Hamiltonian contains nontrivial co
plings between the system and the bath, information that
been encoded over the system Hilbert space does not re
encoded over solely the system Hilbert space but spreads
instead into the combined system and bath Hilbert spac
the time evolution proceeds. Such leakage of quantum in
mation from the system to the bath is the origin of the de
herence process in quantum mechanics.

Let H̃S be a subspace of the system Hilbert space wit
basisu ı̃ &. The evolution of such a subspace will be unita
@19,25# if and only if ~i!

Sau ı̃ &5cau ı̃ &, caPC ~3!

for all u ı̃ &PH̃S and for all Sa , ~ii ! HS does not mix states
within the subspace with states that are outside of the s
space (̂ j 8uHSu ı̃ &50 for all u ı̃ & in the subspace and allu j 8&
outside of the subspace:HS5H̃S% HS8 , whereH̃S acts only

on the subspace andH̃S8 acts only outside of the subspace!,
and ~iii ! system and bath are initially decoupledr(0)
5rS(0)^ rB(0). Wecall a subspace of the system’s Hilbe
space which fulfills these requirements a decoherence-
subspace~DFS!.

The above formulation of DFSs in terms of a larger clos
system is exact. It is extremely useful for finding DFSs, p
viding often the most direct route via simple examination
the system components of the interaction Hamiltonian.
practical situations, however, the closed-system formula
of DFSs is often too strict. This is because the closed-sys
formulation incorporates the possibility that informatio
which is put into the bath will back-react on the system a
cause a recurrence. Such interactions will always occur in
closed-system formulation~due to the the Hamiltonian bein
Hermitian!. However, in many practical situations the likel
hood of such an event is extremely small. Thus, for exam
an excited atom which is in a ‘‘cold’’ bath will radiate
photon and decohere but the bath will not in turn excite
atom back to its excited state, except via the~extremely long!
recurrence time of the emission process. In these situatio
more appropriate way to describe the evolution of the sys
is via a quantum dynamical semigroup master equa
@52,53#. By assuming that~i! the evolution of system densit
matrix is a one-parameter semigroup,~ii ! the system density
matrix retains the properties of a density matrix includi
‘‘complete positivity,’’ and~iii ! the system and bath densit
matrices are initially decoupled, Lindblad@52# has shown
that the most general evolution of the system density ma
rS(t) is governed by the master equation

drS~ t !

dt
52 i @HS ,rS~ t !#1LD@rS~ t !#,

LD@rS~ t !#5
1

2 (
a,b51

M

aab~@Fa ,rS~ t !Fb
† #1@FarS~ t !,Fb

† # !,

~4!
7-3
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whereHS is the system Hamiltonian, the operatorsFa con-
stitute a basis for theM-dimensional space of all bounde
operators acting onHS , andaab are the elements of a pos
tive semidefinite Hermitian matrix. As above, letH̃S be a
subspace of the system Hilbert spaceHS with a basisu ı̃ &.
The evolution over such a subspace is then unitary@24# iff

Fau ı̃ &5cau ı̃ &, caPC ~5!

for all u ı̃ & and for allFa . While this condition appears to b
identical to Eq.~3!, there is an important difference betwee
the Sa’s and theFa’s which makes these two decoherenc
freeness conditions different. In the Hamiltonian formulati
of DFSs, the Hamiltonian is Hermitian. Thus the expans
for the interaction Hamiltonian Eq.~2! can always be written
such that theSa are also Hermitian. On the other hand, t
Fa’s in the master equation, Eq.~4!, need only be bounded
operators acting onHS and thus theFa’s need not be Her-
mitian. Because of this difference, Eq.~5! allows for a
broader range of subspaces than Eq.~3!. For example, con-
sider the situation where there are only two nonzero term
a master equation for a two-level system, corresponding
F15s2 and F25sz where s25u0&^1u and sz5u0&^0u
2u1&^1u ~e.g., cooling with phase damping!. In this case
there is a DFS corresponding to the single stateu0&. In the
Hamiltonian formulation, inclusion ofS15s2 in the inter-
action Hamiltonian expansion Eq.~2! would necessitate a
second term in the Hamiltonian withS25s2

† , along with the
Sz5sz as above. For this set of operators, however, Eq.~3!
allows for no DFS.

B. Decoherence-free subsystems

If one desires to encode quantum information over a s
space and requires that this information rema
decoherence-free, then Eqs.~3! and ~5! provide necessary
and sufficient conditions for the existence of such DFSs. T
notion of a subspace which remains decoherence-
throughout the evolution of a system is not, however,
most general method for providing decoherence-free enc
ing of information in a quantum system. Recently, Kni
Laflamme, and Viola@48# have discovered a method fo
decoherence-free coding into subsystems instead of into
spaces.

Decoherence-free subsystems@48,36,54# are most easily
presented in the Hamiltonian formulation of decoheren
Let A denote the associative algebra formed by the sys
HamiltonianHS and the system components of the intera
tion Hamiltonian, theSa’s. To simplify our discussion we
will assume that the system Hamiltonian vanishes.~It is easy
to incorporate the system Hamiltonian into theSa’s when
one desires that the system evolution preserves
decoherence-free subsystem.! We also assume that the ide
tity operator is included asS05IS and B05IB . This will
have no observable consequence but allows for the use o
important representation theorem.A consists of linear com-
binations of products of theSa’s. Because the Hamiltonian i
Hermitian theSa’s must be closed under Hermitian conjug
tion: A is a †-closed operator algebra. A basic theorem
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such operator algebras which include the identity opera
states that, in general,A will be a reducible subalgebra of th
full algebra of operators onHS @55#. This means that the
algebra is isomorphic to a direct sum ofdJ3dJ complex
matrix algebras, each with multiplicitynJ :

A> %

JPJ
InJ

^ M~dJ ,C!. ~6!

HereJ is a finite set labeling the irreducible components
A, andM(dJ ,C) denotes adJ3dJ complex matrix algebra.
It is also useful at this point to introduce the commutantA8
of A. This is the set of operators which commutes with t
algebraA, A85$X:@X,A#50,;APA%. They also form a
†-closed algebra, which is reducible to

A85 %

JPJ
M~nJ ,C! ^ IdJ

~7!

over the same basis asA in Eq. ~6!.
The structure implied by Eq.~6! is illustrated schemati-

cally as follows, for some system operatorSa :

~8!

In this block diagonal matrix representation, a typical blo
with given J may have a further block diagonal structure,

for a givenJ:

~9!

Here l labels the different degenerate sub-blocks, 1<l
<nJ and m labels the states inside each sub-block 1<m
7-4
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<dJ . Associated with this decomposition of the algebraA is
the decomposition over the system Hilbert space:

HS5 (
JPJ

CnJ^ CdJ. ~10!

Decoherence-free subsystems are defined as the situati
which information is encoded in a single subsystem sp
CnJ of Eq. ~10! ~thus the dimension of the decoherence-fr
subsystem isnJ). The decomposition in Eq.~6! reveals that
information encoded in such a subsystem will always be
fected as identity on the subsystem spaceCnJ, and thus this
information will not decohere. It should be noted that t
tensor product nature which gives rise to the name subsys
in Eq. ~6! is a tensor product over a direct sum, and theref
will not in general correspond to the natural tensor prod
of qubits. Further, it should be noted that the subsystem
ture of the decoherence implies that the information sho
be encoded in a separable way. Over the tensor structu
Eq. ~10! the density matrix should split into two valid densi
matrices: rS(0)5r ^ g, where r is the decoherence-fre
subsystem andg is the corresponding component of the de
sity matrix which does decohere. Finally it should be poin
out that not all of the subsystems in the different irreduci
representations can be simultaneously used:~phase! decoher-
ence will occur between the different irreducible compone
of the Hilbert space labeled byJPJ. For this reason, from
now on we restrict our attention to the subspace defined
given J.

Decoherence-free subspaces are now easily connect
decoherence-free subsystems. Decoherence-free subs
correspond to decoherence-free subsystems possessing
dimensional irreducible matrix algebras:M(1,C). The mul-
tiplicity of these one-dimensional irreducible algebras is
dimension of the decoherence-free subspaces. In fact
easy to see how the decoherence-free subsystems arise
a noncommuting generalization of the decoherence-free
space conditions. Let$ulm&%, 1<l<nJ and 1<m<dJ de-
note a subspace ofHS with given J. Then the condition for
the existence of an irreducible decomposition as in Eq.~6! is

Saulm&5 (
m851

dJ

Mmm8,aulm8&, ~11!

for all Sa , l, andm. Notice thatMmm8,a is not dependent on
l, in the same way thatca in Eq. ~3! is not the same for al
u ı̃ & ~therem51 and fixed!. Thus for a fixedl, the subspace
spanned byulm& is acted upon in some nontrivial way. How
ever, becauseMmm8,a is not dependent onl, each subspace
defined by a fixedm and running overl is acted upon in an
identical manner by the decoherence process.

At this point it should be noted that the generalization
the Lindblad master equation Eq.~4! with a decoherence-fre
subspace to the corresponding master equation fo
decoherence-free system is not trivial. This is because
above, theFa operators in Eq.~4! are ~for all practical pur-
poses! not required to be closed under conjugation. The r
04230
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resentation theorem Eq.~6! is hence not directly applicable
We will show, however, that the master equation analog
Eq. ~11!

Faulm&5 (
m851

dJ

Mmm8,aulm8& ~12!

provides a necessary and sufficient condition for the pre
vation of decoherence-free subsystems.

As above, we consider a subspace of the system Hil
space spanned byulm&, with 1<l<nJ and 1<m<dJ . Our
notation will be significantly simpler if we explicitly write
out the formal tensor product over this subspace:ulm&5ul&
^ um&. In the subsystem notation, we claim that t
decoherence-free subsystem condition is

Faul& ^ um&5ul& ^ Maum&. ~13!

A proper decomposition of the system Hilbert space requi
as noted above, that the system density matrix is a ten
product of two valid~Hermitian, positive! density matrices:

rS~0!5 (
ll8,mm8

rll8~0!gmm8~0!ulm&^lm8
8 u5r~0! ^ g~0!,

~14!

where r(0) contains the information which will remain
decoherence-free, andg(0) is an arbitrary but valid density
matrix.

In general the operatorsFa will not be decomposable as
single tensor product corresponding tor(0)^ g(0). Rather,
they will be a sum over such tensor products, correspond
to an expansion over an operator basis:Fa5(pNa

p
^ Ma

p .
The decohering generator of evolution~4! thus becomes

LD@rS~0!#5
1

2 (
ab

aab(
pq

~2Na
pr~0!Nb

q†
^ Ma

pg~0!Mb
q†

2Nb
q†Na

pr~0! ^ Mb
q†Ma

pg~0!

2r~0!Nb
q†Na

p
^ g~0!Mb

q†Ma
p !. ~15!

Tracing over theg component, and using the cyclic nature
the trace allows one to factor out a commonmab

pq

[Trg„Ma
pg(0)Mb

q†
…, yielding:

Trg$LD[rS~0!%5
1

2 (
ab,pq

aabmab
pq ~2Na

pr~0!Nb
q†

2Nb
q†Na

pr~0!2r~0!Nb
q†Na

p !.

The evolution of ther component of the density matrix thu
satisfies the standard master equation~4!, for which it is
known that the evolution is decoherence-free@24# if and only
if

Na
q ul&5ca,qul& ;a. ~16!

This implies that the necessary and sufficient condition fo
decoherence-free subsystem is
7-5
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Fa5(
q

ca,qI ^ Ma
q5I ^ (

q
ca,qMa

q5I ^ Ma , ~17!

which is the claimed generalization of the Hamiltonian co
dition of decoherence-free subsystems, Eq.~12!.

We will use the acronym DFS to denote bo
decoherence-free subsystems and their restrict
decoherence-free subspaces, whenever no confusion
arise. When we refer to DF subspaces we will be specific
referring to the one-dimensional version of the DF su
systems.

III. THE STABILIZER FORMALISM AND ERROR-
CORRECTION

In the theory of quantum error correcting codes~QECCs!
it proved fruitful to study properties of a code by consideri
its stabilizerS. This is the group formed by those syste
operators which leave the code words unchanged, i.e.,
‘‘stabilize’’ the code. Properties of stabilizer codes and t
theory of quantum computation on these stabilizer co
have been developed in@51#. In the framework of QECCs
the stabilizer allows on the one hand to identify the errors
code can detect and correct. On the other hand it also per
one to find a set of universal, fault-tolerant gates by ana
ing the centralizer ofS, defined as the set of operations th
commute with all elements inS ~equal to the normalizer, the
set of operations that preserveS under conjugation, in the
case of the Pauli group!. In the context of QECCs, the sta
bilizer S is restricted to elements in the Pauli group, i.e.,
group of tensor products ofI,X,Y,Z , and is a finite Abelian
group.

The extension of stabilizer theory yields much insight in
DFSs. We do this here by defining a non-Abelian, and
certain cases infinite stabilizer group. The observation
DFSs are highly degenerate QECCs@25# will appear natu-
rally from this formalism. Such a generalized stabilizer h
already been defined in previous work dealing w
decoherence-free subspaces@40#, and its normalizer shown
there to lead to identification of local gates for univers
computation. A key consequence of this approach was
observation that the resulting gates do not take the sys
out of the DFS during the entire switching time of the ga

We now review and extend the results in@40# to analyze
the error detection and correction properties of DFSs
QECCs. We shall incorporate DFSs and QECCs into a u
fied framework, similarly to the representation-theoretic a
proach of@48,36#. The question of performing quantum com
putation on a specific DFS will be addressed in the n
section.

A. The stabilizer-general theory

An operatorS is said to stabilize a codeC if

uC&PC iff SuC&5uC& ;SPS. ~18!

The set of operators$S% form a groupS, known as the sta-
bilizer of the code@51#. Clearly,S is closed under multipli-
cation. In the theory of QECC the stabilizers that have b
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studied are subgroups of the Pauli-group~tensor products of
I,X,Y,Z ). Since any two elements of the Pauli group eith
commute or anticommute, the stabilizer, in this case is
ways Abelian@26#. The code is thus the common eigenspa
of the stabilizer elements with eigenvalue 1.

In general an error-process can be described by the K
operator-sum formalism @56,8#: r→(mAmrAm

† . The
Kraus-operatorsAm can be expanded in a basis$Ea%
of ‘‘errors.’’ The standard fault-tolerant QECC model a
sumes that errors affect single qubits independently. QE
can also deal with higher-order correlations by using a c
which is suitably constructed for the particular error mod
assumed. Therefore the theory of QECCs has focused
searching for codes that make quantum information rob
against 1,2, . . . , ormore erroneous qubits, as this is the mo
reasonable model when one assumes spatially separate
bits with their own local environments. Detection and co
rection procedures must then be implemented at a rate hi
than the intrinsic error rate. In the QECC error-model, t
independent errors are spanned by single-qubit elem
(I ,X,Y,Z). An analysis of the error-correction properties c
then be restricted to correction of combinations of these
sic errors~which are also members of the Pauli group! acting
on a certain number of qubits simultaneously.

The distanced of a QECC is the number of single-qub
errors that have to occur in order to transform one code w
in C to another code word inC. An errorE is detectable if it
takes a code word to a subspace of the Hilbert space th
orthogonal to the space spanned byC ~this can be observed
by a nonperturbing orthogonal von Neuman measureme!.
A distanced code can detect up tod21 errors. In order to be
able to correct an error on a certain code word the error~up
to a degenerate action of different errors! also needs to be
identified, so that it can be undone. Hence errors on differ
code words have to take the code words to different ortho
nal subspaces. The above translates to the QECC-cond
@8#:

A QECC C can correct errorsE5$Ea% if and only if

^C j uEb
†EauC i&5cabd i j ;Ea ,EbPE. ~19!

The stabilizer of a QECC offers a systematic analysis
the errors which the code can detect and correct@9#. Two
types of errors can be dealt with by stabilizer codes:~i! errors
Ea

†EbÞI that anticommute with anSPS, and~ii ! errors that
are part of the stabilizer (EaPS). It is straightforward to see
that both~i! and~ii ! imply the QECC condition Eq.~19!. For
case ~i!, if Ei

†EjS52SEi
†Ej , then ^C j uEb

†EauC i&
5^C j uEb

†EaSuC i&52^C j uSEb
†EauC i&5 2^C j uEb

†EauC i&.
Hence^C j uEb

†EauC i&50 andcab5dab . Errors of type~ii !,
EaPS, leave the code words unchanged and therefore tr
ally lead to Eq.~19!. The first class,~i!, are errors that require
active correction. The second class,~ii !, are ‘‘degenerate’’
errors that do not affect the code at all. QECCs can be
garded as~passive! DFSs for the errors in their stabilize
@26#. Conversely, being passive, highly degenerate co
@25,57#, DFSs can be viewed as a class of stabilizer co
that provide passive protection type~ii ! errors@i.e., where the
Am are linear combinations of elements generated~under
7-6
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multiplication! by the stabilizer#, and can detect and be use
to correct the~usually small! set of errors that anticommut
with the DFS stabilizer. The stabilizer thus provides a unifi
tool to identify the errors that a given code can deal with,
a DFS and as a QECC. An analysis of the properties of D
with a stabilizer in the Pauli group has been carried ou
@26#.

B. DFS-stabilizer

Most of the DFSs stemming from physical error-mod
will not have a stabilizer in the Pauli group, i.e., they a
nonadditive codes. The stabilizer may even be infinite.
particular, the codes obtained from a noise model where
rors arise from a symmetric coupling of the system to
bath and that form the focus of this paper, are of this typ

As discussed in the previous section, a DFS is comple
specified by the condition:

Saum& ^ ul&5um& ^ Maul&, ~20!

arising from the splitting of the algebra generated by
Sa’s: A5 % JPJ InJ

^ M(dJ ,C). This splitting of the algebra
has allowed both DFSs and QECCs to be put into a sim
framework@48,36#. We will now show that the DFS condi
tion on the algebraA generated by theSa can be converted
into a stabilizer condition on the complex Lie algebra gen
ated by theSa’s. We define the continuous DFS-stabiliz
D(vW ) as

D~v1 ,v2 , . . . ,vN!5expF(
a

va~Sa2I ^ Ma!G , vaPC.

~21!

Clearly, if the DFS condition Eq.~20! is fulfilled for a set of
statesum& ^ ul&, then

D~vW !um& ^ ul&5um& ^ ul& ;vaPvW . ~22!

Thus the DFS condition implies that theD(vW ) stabilize the
DFS. Further if Eq.~22! holds then in particular it must hold
for a vW which has only one nonvanishing componentvb .
Thus Eq.~22! implies thatD(0, . . . ,0,vb,0, . . . ,0)um& ^ ul&
5um& ^ ul&. Recalling that exp@•# is a one-to-one mapping
from a neighborhood of the zero matrix to a neighborhood
the identity matrix, it follows that there must exist a sm
enoughva such that Eq.~22! implies the DFS condition Eq
~20!. Thus we see that we can convert the DFS condition i
a condition on the stabilizer of the complex Lie algebra g
erated by theSa2I ^ Ma’s:

uC&PDFS iff D~vW !uC&5uC& ;vW PCN. ~23!

In some cases we will be able to pick a finite subgroup fr
elements ofD(vW ) which constitutes a stabilizer. We wi
mention these instances in the following sections. Howe
apart from the conceptual framework, our main motivation
introduce the stabilizer for a DFS is to be able to analyze
errors which a DFS~i! detects/corrects~as a QECC!, and~ii !
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those which it avoids~passive error correction!. The continu-
ous stabilizer provided in Eq.~21! will be sufficient to study
these errors.

As mentioned in the previous subsection, errorsEa ~i!
that anticommute with an element in the stabilizer will ta
code words to subspaces that are orthogonal to the c
These errors will be detectable~and correctable ifEb

†Ea an-
ticommutes with a stabilizer element! @9#. In order to identify
the QECC properties of a DFS, it will be convenient to lo
for elements of the Pauli group among theD(vW ).

A codeC with stabilizerD(vW ) will avoid errors of type~ii !
in its stabilizer in the sense that, if all of the Kraus operat
of a given decoherence process can be expanded over s
lizer elementsA i(t)5*CNei(vW ,t)D(vW )dvW , then

r~ t !5(
i

A i~ t !r~0!A i
†~ t !5(

i
U E

CN
ei~vW ,t !dvWU2

r~0!.

~24!

The normalization condition( iA i(t)
†A i(t)5I then implies

that ( i u*CNei(vW ,t)dvW u251. Consequently, as expected, th
DFS does not evolve. Hence we see that the stabilizer
vides an efficient method for identifying the errors which
code avoids. In later sections we analyze the concrete f
of the stabilizer Eq.~21! for the error models studied in thi
paper.

IV. THE COMMUTANT AND UNIVERSAL QUANTUM
COMPUTATION ON A DFS

A DFS is a promising way to store quantum informatio
in a robust fashion@27#. From the perspective of quantum
computation, however, it is even more important to be a
to controllably transform states in a DFS, if it is to be tru
useful for quantum information processing. More spec
cally, to perform quantum algorithms on a DFS one has to
able to perform universal quantum computation us
decoherence-free states. The notion of universal computa
is the following: with a restricted set of operations or inte
actions at hand, one wishes to implement any unitary tra
formation on the given Hilbert space, to an arbitrary deg
of accuracy. From a physical implementation perspectiv
seems clear that the operations used~gates! should be limited
to at most two-body interactions. In particular we wish
identify a finite set of such gates that is universal on a DF

Since we do not wish to implement active QECC, w
impose a very stringent requirement on the operations
allow for computation using DFSs: we do not allow gat
that ever take the decoherence free states outside the
where the states would decohere under the noise-pro
considered.2 As a first step towards this goal we thus need
be able to identify the physical operations which perfo
transformations entirely within the DFS.

2We shall lift this requirement in Sec. VIII.
7-7
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A. Operations that preserve the DFS

There are essentially two equivalent approaches to id
tify the ‘‘encoded’’ operations that preserve a DFS. One
via the normalizer of the stabilizer of a code@40#; the second
is via the commutant of the†-closed algebra generated b
the error operators@48#. Both will be briefly reviewed here.

1. Computation on a stabilizer DFS

The stabilizer formalism is very useful for identifying a
lowed gates that take code words to code words@51#. An
operationU keeps code wordsuC& inside the code space,
and only if the transformed stateUuC& is an element of the
code C. Thus using the stabilizer condition~18! for codes
with stabilizerS andC5$uC&:SuC&5uC& ;SPS%, we have

UuC&PC iff SUuC&5UuC& ;SPS. ~25!

This impliesU21SUuC&5uC& and soU21SUPS: Allowed
operationsU transform stabilizer elementsS by conjugation
into stabilizer elements;U is in the normalizer ofS ~if S is a
group!. If we restrict the allowed operations to gates in t
Pauli group~as is done in@51#!, then the allowed gatesU
will fix the stabilizer pointwise~element by element!. In the
case of DFS with a continuous stabilizerD(vW ), the above
translates to the following condition@40#

UD~vW !U†5D„vW 8~vW !…, ~26!

together with the requirement thatD(vW 8(vW )) must coverS.
To satisfy the covering condition, it is sufficient to hav

vW 8(vW ) be a one-to-one mapping.
Equation~26!, derived by generalizing concepts from th

theory of stabilizers in the Pauli group, is a condition th
allows one to identify gatesU that transform code words t
code words. In a physical implementation these gates wil
realized by turning on HamiltoniansH between physical qu
bits for a certain timet: U(t)5e2 i tH. So far we only required
that the action of the gate preserve the subspace at the
clusion of the gate operation, but not that the subspace
preserved throughout the entire duration of the gate op
tion. The stabilizer approach allows us to further identify t
more restrictive set of Hamiltonians that keep the sta
within the DFS throughout the entire switching time of t
gate. As a result, in the limit of ideal gates, the entire syst
is free from noise at all times. This is different from QEC
since there errors continuously take the code words out
of the code space@58#, and hence error correction needs to
applied frequently even in the limit of perfect gate ope
tions. Imperfections in gate operations can be dealt with
the DFS approach by concatenation with a QECC@25#, as
shown explicitly for the exchange interaction in@28#.

By rewriting condition ~26! as U(t)D(vW )
5D„vW 8(vW ,t)…U(t), taking the derivative with respect tot and
evaluating at t50 we obtain HD(vW )5D„vW 8(vW ,0)…H
1 i (]D/]vW 8)(dvW 8/dt)u t50, so that:
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Theorem 1: A sufficient condition for the generating
Hamiltonian to keep a state at all times entirely within t
DFS isHD(vW )5D„vW 8(vW )…H wherevW 8(vW ) is one-to-one and
time independent.

For most applications we will only need gates that co
mute with all stabilizer elements. The condition for the ge
erating Hamiltonian then simplifies toHD(vW )5D(vW )H.

2. Computation on irreducible subspaces

We can derive conditions to identify allowed gates on
DFS by using the representation theoretic approach de
oped in@48#, @36#, and Sec. II. Recall that the decompositio
of the algebraA> % JPJ InJ

^ M(dJ ,C) generated by the er

rors $Sa% induces a splitting of the Hilbert spaceHS
5(JPJCnJ^ CdJ into subspaces possessing a tensor prod
structure suitable to isolate decoherence-free subsyst
The set of operators in the commutant ofA, A8
5$X:@X,A#50,;APA%5A85 % JPJM(nJ ,C) ^ IdJ

, obvi-
ously generate transformations that affect the code sp
only. In particular, they take states in a DFS to other state
that same DFS.A8 is generated by operators which commu
with theSa . Again, our goal is to find gates that act within
DFS during the entire switching time, and to this end w
need to identify Hermitian operatorsH in A8 to generate an
evolutionU(t)5exp@2itH# on the DFS.

Theorem 2: A sufficient condition for a HamiltonianH to
generate dynamicsU(t)5exp@2itH# which preserves a DFS
is thatH be in the commutant of the algebraA.

However, because we can only use one particular D
~corresponding to a specificKPJ) to store quantum infor-
mation ~the coherences between superpositions of differ
DFSs are not protected!, the operators which commute wit
the Sa’s are not the only operators which perform nontrivi
operations on a specific DFS. The operations inA8 preserve
all DFSs in parallel. However, if we restrict our system
only one such DFS, we do not need any constraints on
evolution of the other subspaces. It is then possible to c
struct a necessary and sufficient condition for a Hamilton
by modifying the commutant to:

T>„M~nK ,C! ^ IdK
…% M~d2dKnK ,C!, ~27!

where dK5dim(HS) and just leaves the specific DFS~K!
invariant.

Theorem 3: A necessary and sufficient condition for
HamiltonianH to generate dynamics which preserves a D
corresponding to the irreducible representationKPJ, is H
PT.

We will use both the stabilizer and the commutant a
proaches to find a set of universal gates for decohere
processes of physical relevance. In the cases discussed i
paper, any one of the two approaches is clearly sufficient
we do not need all theorems in full generality. However,
provide here a general framework and the tools required
analyze DFS and QECC stemming from any error mode

Finally we should point out again that from a practic
perspective, it is crucial to look for the Hermitian operatio
which perform nontrivial operations on the DFS and whi
7-8
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correspond to only one- or two-body physical interactio
Without this requirement, it is clear that one can always@37#
construct a set of Hamiltonians~satisfying the conditions o
Theorem 2! which span the allowed operations on a DFS.
primary goal of this paper is therefore to construct such o
and two-body Hamiltonians for specific decoherence mec
nisms, in order to achieve true universal computation on
corresponding DFSs.

B. Universality and composition of allowed operations

Using the tools developed in the previous section, we
now find local one-and-two qubit gates that represent
coded operations on DFSs. However, in general, a disc
set of gates applied in alternation is not sufficient to gene
a universal set of gates. Nor is it sufficient to obtain eve
encoded unitary operation exactly. Furthermore, for anal
of the complexity of computations performed with a giv
universal set of gates, it is essential to keep under contro
number of operations needed to achieve a certain gate w
a desired accuracy. In the theory of universality~e.g., @12#!
the composition laws of operations have been analyzed
tensively. We will review the essential results relevant
our purposes here.

Let us assume that we have a set of~up to two-body!
HamiltoniansH5$H i : i 51, . . . ,M % that take DFS states t
DFS states. We will construct gates using the following co
position laws:

~1! Arbitrary phases: Any interaction can be switched
for an arbitrary time. Thus any gate of the formU(t)
5exp(2itH i) can be implemented.

~2! Trotter formula: Gates performing sums of Hamilt
nians are implemented by using the short-time approxim
tion to the Trotter formula exp@i(t1H i1t2H j )#
5 limn→`@exp(i(t1 /n)H i)exp(i(t2 /n)H j )#n:

ei (t1Hi1t2H j )/n5eit 1Hi /neit 2H j /n1OS 1

n2D . ~28!

This is achieved by quickly turning on and off the two inte
actionsH i ,H j with appropriate ratios of duration times. A
alternative, direct, way of implementing this gate is to swit
on the two interactions simultaneously for the appropri
time intervals.

~3! Commutator: It is possible to implement the comm
tator of operations that are already achievable. This is a c
sequence of the Lie product formula

exp@H i ,H j #5 lim
n→`

@exp~ iH i /An!exp~ iH j /An!

3exp~2 iH i /An!exp~2 iH j /An!#n,

which has the short-time approximation

et[Hi ,H j ]/n5eitHi /AneitH j /Ane2 i tHi /Ane2 i tH j /An1OS 1

nAn
D .

~29!
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Again, the gateeit (2 i [Hi ,H j ]) can be implemented to high
precision by alternately switching on and off the appropri
two interactions with a specific duration ratio.3

~4! Conjugation by unitary evolution: Another useful a
tion in constructing universal sets of gates comes from
observation that if a specific gateU and its inverseU† can be
implemented, then any HamiltonianH which can be imple-
mented can be modified by performingU before andU† after
the gate exp(2itH). This gives rise to the transforme
Hamiltonian

U exp~2 i tH!U†5exp~2 i tUHU†!5exp~2 i tHeff!.
~30!

Note that the laws~1!–~3! correspond to closing the set o
allowed Hamiltonians as a Lie algebra~scalar multiplication,
addition, and Lie commutators can be obtained out of
given Hamiltonians!.

If ~a subset of! the composition laws~1!–~4! acting on the
set H give rise to a set of gates that is dense in the gro
SU(dK) ~via successive application of these gates!, wheredK
is the dimension of the DFS, then we shall refer toH as a
universal set of generators. Equivalently, this means thaH
generates the Lie algebra su(dK) ~traceless matrices! via sca-
lar multiplication, addition, Lie commutators, and conjug
tion by unitaries. The generators of this algebra can be
tained fromH by these operations.

For all practical applications and implementations of
gorithms, we will only be interested in approximating a ce
tain gate sequence with a given accuracy. Note that the c
position laws~2! and ~3! use only repeated applications o
~1! in order to approximate a certain gate. We can replace
requirement to perform an arbitrary phase,~1!, by noting that
eiHi is generically dense in the Abelian group$exp(itH i)%.
Repeated application of that gate can then approximate
arbitrary phase to any desired accuracy. Thus we can in p
ciple restrict our available gates to$exp(iH i)%. Repeated ap-
plication of these gates can then be used to approximate
operation in SU(dK) to arbitrary accuracy.

In order to prove that a setH generates a universal set o
Hamiltonians, we use the fact that a large group of univer
sets have already been identified@43,44,59#. It suffices to
show thatH generates one of these sets, in order to pro
that H is a universal set of generators. We will use the fa
that the set of one qubit operations SU~2! is generated by any
two arbitrary rotations with irrational phase, around two no
parallel axes. Alternatively, if we are given these two ro
tions with any phase, then an Euler-angle construction ca
used to yield any gate in SU~2! by application of a small
number of rotations~three if the axes are orthogonal!. In
addition we will use~and prove! a lemma~enlarging lemma,
Appendix C! that allows extension to su(n11) of a given

3Note that in order to implemente2 i tA we would useeiqA5I and
implementei (q2t)A instead. This depends onA having rationally
related eigenvalues, which will always be the case for the Hami
nians of interest to us.
7-9
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su(n) acting on ann-dimensional subspace of a Hilbert spa
of dimensionn11, with the help of an additional su~2!.

In order to use this approach to universality, it is crucial
have bounds on the length of the gate sequences approx
ing a certain gate in terms of the desired accuracy. This is
the more important if one universal set is to be replaced
any other with only polynomial overhead in the number
gates applied, for otherwise the complexity classes would
be robust under the exchange of one set for another.
whole notion of universality would then by questionab
The following key theorem proved independently by S
lovay and Kitaev~see @12#! establishes the equivalence
universal sets, and provides bounds on the length of g
sequences for a desired accuracy of approximation. In o
to quantify the accuracy of an approximation, we need
define a distance on matrices. Since our matrices act
space of given~finite! dimensiondK , any metric is as good
as any other. For example, we can use the trace-n
d(U,V)5A12(1/dK)Re@Tr(U†V)#. A matrix V is then said
to approximate a transformationU to accuracye if d(U,V)
<e.

Theorem (Solovay-Kitaev): Given a set of gates that i
dense in SU(2k) and closed under Hermitian conjugatio
any gateU in SU(2k) can be approximated to an accuracye
with a sequence of poly@ log(1/e)# gates from the set.

DFS-Corollary to the Solovay-Kitaev Theorem: Assume
that the DFS encodes adK-dimensional system inton physi-
cal qubits. Given that one can exactly implement the gate

$ei t̃ iHi:H iPH%, @ t̃ i are ~fixed! irrational multiples ofp, and
H is a universal generating set# it is possible to approximate
any gate in SU(dK) ~any encoded operation! using m
5poly@ log(1/e)# gates.

Furthermore, if we can only implement the given ga
approximately, say to an accuracyd, we will still be able to
approximate the target gate: It is known that a sequenc
m d-imprecise unitary matrices is~in some norm! at most
distancemd from the desired gate. If a sequence of exac
implemented gatesU1 , . . . ,Um approximates a target gateU
up toe, and instead ofU1 , . . . ,Um , we use gates that are a
most some distanced apart, then the total sequence will be
moste1md5e1poly@ log(1/e)#d apart fromU. If we make
sure thatd,epoly@ log(1/e)# then thed-faulty sequence will
still approximateU to a precision 2e.

If we further assume that the physical interaction that
switch on and off is given by the device and is unlikely
change its form, then the imprecision of the gate comes
tirely through the coupling strength and the interaction tim
i.e., a faulty gate is of the formUf5ei (f1Df)H, where U
5eifH is the unperturbed gate. The distance

d~U,Uf !5A12
1

dK
Re@Tr~eiDfH!#

5A12
1

dK
Re@Tr~cosDf11 i sinDfH!#

5A12cosDf5A2sin~Df/2!'
Df

A2
[d ~31!
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is proportional to the errorDf of the product of coupling
strength and interaction time. This translates to~nearly! lin-
ear behavior in the desired final accuracye.

V. COLLECTIVE DECOHERENCE

We now focus on a particularly interesting and use
model of a DFS. This is the case of collective decohere
on n qubits. We distinguish between two forms of collectiv
decoherence. The first, and simpler, type of collective de
herence is weak collective decoherence~WCD!. We define
the collective operators as

Sa[(
j 51

n

sa
j , ~32!

wheresa
j denotes a tensor product of thea th Pauli matrix,

a5x,y,z,

sx5S 0 1

1 0D , sy5S 0 2 i

i 0 D , sz5S 1 0

0 21D
~33!

~in the basis spanned bysz eigenstatesu0& and u1&) operat-
ing on the j th qubit, and the identity on all of the othe
qubits, i.e.,sa

j 5I ^ I ^¯^ sa ^¯^ I . WCD is the situa-
tion in which only one collective operatorSa is involved in
the coupling to the bath, i.e.,HI5Sa ^ B.

The second, more general type of collective decohere
is strong collective decoherence~SCD!. We define SCD as
the general situation in which the interaction Hamiltonian
given byHI5(a51

3 Sa ^ Ba . TheSa provide a representation
of the Lie algebra su~2!:

@Sa ,Sb#522i eabgSg . ~34!

The Ba’s are not required to be linearly independent.
Both of these collective decoherence mechanisms are

pected to arise from the physical condition that the bath c
not distinguish the system qubits@16,17,21,24#. If there aren
qubits interacting with a bath, the most general interact
Hamiltonian linear in thesa

i is given by

HI5(
i 51

n

(
a5x,y,z

sa
i

^ Bi ,a , ~35!

where theBi ,a are bath operators. If the bath cannot dist
guish between the system qubits, thenBi ,a should not de-
pend on i and the Hamiltonian becomesHI5(a5x,y,zSa
^ Ba , i.e., strong collective decoherence.

As a concrete example of such collective decoheren
consider the situation in which the bath is the electrom
netic field, and the wavelength of the transition between
states of the qubits is larger than the spacing between
qubits. The electromagnetic field will interact with each
these qubits in an identical manner, because the field stre
over a single wavelength will not vary substantially. Th
gives rise to the well-known phenomena of Dicke super- a
sub-radiance@60#. Whenever the bath is a field whose ener
7-10
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is dependent on its wavelength and this wavelength is m
greater than the spacing between the qubits, one should
pect collective decoherence to be the dominant decoher
mechanism. It is natural to expect this to be the case
condensed-phase high-purity materials at low temperatu
However, to the best of our knowledge at present a rigor
study quantifying the relevant parameter ranges for this
teresting condition to hold in specific materials is still lac
ing ~see Refs.@30,31# for an application to quantum dots
though!.

VI. THE ABELIAN CASE: WEAK COLLECTIVE
DECOHERENCE

For a decoherence mechanism with only one operatoSa
coupling to the bath, the implementation and discussion
universal computation with local interactions is simpler th
in the general case, because we can work in the basis
diagonalizesSa (Sa is necessarily Hermitian in the Hami
tonian model we consider here!. The algebra generated bySa
is Abelian and reduces to one-dimensional~irreducible! sub-
algebras corresponding to the eigenvalues ofSa . More spe-
cifically, A15 % lK

InK
^ M(lK), wherelK is theKth eigen-

value with degeneracynK , and M(lK) is the algebra
generated bylK . M(lK) acts by multiplying the corre-
sponding vector bylK . In this situation the DF subsystem
are only of the DF subspace type. This simpler case of w
collective decoherence allows us to present a treatment
examples that will make the general case of strong collec
decoherence~SCD! more intuitive.

In the following we will, without loss of generality, focu
on the caseSa[Sz5(k51

n sz
k .4 This operator is already di

agonal in the computational basis~the eigenstates are bi
strings of qubits in eitheru0& or u1&). Sincesz

k acting on the
kth qubit contributes 1 if the qubit isu0&, and21 if the qubit
is u1&, the eigenvalue of a bitstring is~number of 0’s2
number of 1’s!, and the eigenvalues ofSz are $n,n
22, . . . ,2n12,2n%.

The degeneracynK of the eigenspace corresponding to
eigenvalue

lK5n22K ~36!

is

nK5S n
K D ~37!

~the number of different bitstrings withn2K 0’s andK 1’s!.
The Abelian algebra generated bySz thus splits into one-
dimensional subalgebras with degeneracynK . The largest
decoherence-free subspaces in this situation correspon
the space spanned by bitstring vectors where the numbe
0’s and the number of 1’s are either the same (n even!, or
differ by one (n odd!.

4The casesa5x (y) follow by applying a bitwise Hadamard
~Hadamard1phase! transform to the code.
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A. The stabilizer and error correction properties

Following the formalism developed in Sec. III we find
using Eq.~21! with v5 iu ~u can be complex!, the stabilizer
for the weak case corresponding to a DFS with eigenva
lK to be

ZK
^ n~u!5exp@ iu~Sz2lKI !#

5 ^

k51

n

e2 ilKu~ I cosu1sz
ki sinu!

5e2 ilKuP~u! ^ n, ~38!

where

P~u!5S eiu 0

0 e2 iuD . ~39!

For strictly realu some of the errors which are protecte
against are simply collective rotations about thesz axis ~and
an irrelevant global phase!. For strictly imaginaryu we find
that the errors which are protected against are contrac
collective errors of the form diag(eu,e2u), i.e., they result in
loss of norm of the wave function. Any physical process w
Kraus operators that are linear combinations of these er
will therefore not affect the DFS.

This is the right framework in which to present anoth
form of the stabilizer. We note that in the case of we
collective decoherence, we can find a stabilizer group wit
finite number of elements. Define

Z1/n5expS 2p i

n
szD5S expS 2p i

n D 0

0 expS 2
2p i

n D D .

~40!

Then the n-element group Zn generated by
exp(2i2plK /n)Z1/n

^ n is a stabilizer for the DFS correspondin
to the eigenvaluelK . To see that

expS 2
2p ilK

n DZ1/n
^ nuC&5uC& iff uC&PDFS~lK!,

~41!

note that aZ1/n acting on au0& contributes exp(2pi/n) to
the total phase, whereasZ1/n acting on au1& contributes
exp(22pi/n). SoZ1/n

^ n gives a total phase of exp„2p i ~number
of 0’s2number of 1’s!/n…5exp(2pilK /n) when acting on a
bitstring. This stabilizer and Eq.~41! provide a simple crite-
rion to check whether a state is in a DFS or not.

Let us now briefly comment on the error-correction a
detection properties of the code in the WCD case. The
bilizer elements are all diagonal, and equal to a tensor pr
uct of identical 1-qubit operators. The elementZ^ n is in the
stabilizer and anticommutes with odd-numberX and Y er-
rors. So odd-number qubit bit-flips are detectable erro
However, the code is not able to detect any form of er
7-11
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involving Z’s and even-numberX’s andY’s, since any such
error commutes with all elements in the stabilizer.

B. Nontrivial operations

Observe that the algebraA in the WCD case is generate
entirely by Sz . Hence by Theorem 2, the DFS-preservi
operations are those that are in the commutant ofSz . For
single-body Hamiltonians it is easy to see that the only n
trivial such set is formed by interactions proportional tosz

i

operators. As for two-qubit Hamiltonians, it is simpler to u
Theorem 1 and the expression~38! for the stabilizer. We are
then looking for 434 Hermitian matrices that commute wit
P(u) ^ 2; these are of the form

T i j ~z1 ,z2 ,z3 ,z4 ,h!5S z1 0 0 0

0 z2 h 0

0 h* z3 0

0 0 0 z4

D , ~42!

whereT i j acts on qubitsi and j only. Herezi is real, h is
complex, and the row space is spanned by thei th and j th
qubit basis$u00&,u01&,u10&,u11&%. We note that systems with
an internal Hamiltonian of the Heisenberg type,

HHeis5(
j 51

n

e jsz
j 1

1

2 (
i , j 51

n

Ki j sW i•sW j , ~43!

have exactly the correct form for any pair of spinsi , j . In-
deed, it is not hard to see that@HHeis,Sz#50 @28#. The
Heisenberg Hamiltonian is ubiquitous, and appears, e.g
NMR. This means that the natural evolution of NMR sy
tems under WCD~which is not necesarily the correct dec
herence model for NMR systems!, preserves the DFS, an
implements a nontrivial computation.

The specific case

Ei j [T i j ~1,0,0,1,1!5S 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

D , ~44!

which flips the two statesu01& andu10& of qubits i and j and
leaves the other two states invariant, is especially import
it is the exchange interaction. The other interactions we e
ploy are

T i j
P[T i j ~1,0,0,0,0!5diag~1,0,0,0!,

T i j
Q[T i j ~0,0,0,1,0!5diag~0,0,0,1!, ~45!

which introduce a phase on the stateu00& (P) and u11& (Q)
of qubits i and j; and

Z̄12[T12~0,0,1,0,0!5diag~0,0,1,0!. ~46!
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In the following we show that these special interactions
sufficient to obtain a universal generating set operating
tirely within a weak-collective DFS.

C. Universal quantum computation inside
the weak-Collective DFS

Let DFSn(K) denote the decoherence-free subsystem on
physical qubits with eigenvalueK. We show here that

H5$Ei ,i 11 ,T i ,i 11
P ,T i ,i 11

Q : i 51, . . . ,n21,Z̄12% ~47!

is a universal generating set for any of the DFSs occurring
a system ofn physical qubits. It is convenient to work di
rectly with the Hamiltonians, and to show thatH gives rise to
the Lie algebra su(dK) on each DFSn(K) @via scalar multi-
plication, addition, and Lie commutator; see the allow
compositions of operations~1!–~3! in Sec. IV B#. Exponen-
tiation then gives the group SU(dK) on the DFS. We will
proceed by induction onn, the number of physical qubits
building the DFS states ofn qubits out of DFS states forn
21 qubits. A graphical representation of this construction
useful ~and will also generalize to the strong case presen
in Sec. VII!: see Fig. 1.

We have seen that in the WCD case the DFS states
simply bitstrings ofn qubits in eitheru0& or u1&. The differ-
ent n-qubit DFSs are labeled by their eigenvalue

FIG. 1. Graphical representation of DFS states for weak col
tive decoherence~WCD!. The horizontal axis marks the number o
qubits. The vertical axis shows~number of 0’s2number of 1’s! in
each state (Kn). Each state in the standard basis thus correspond
a path from the origin which follows the indicated arrows. T
dimension of a DFS corresponds to the multiple pathways thro
which one can arrive at the sameJn . The DFSs are labeled by the
values ofn and Kn , as DFSn(Kn). The insert shows the matrix
structure of operators acting on DFS5(3), in terms of Top~T! and
Bottom~B! states~see text for definition of these!. Note that there is
only one T-state entering DFS5(3), whence the action of exchang
is represented by a 131 block.
7-12
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lK5~number of 0’s2number of 1’s![Kn . ~48!

To obtain a DFS state ofn qubits out of a DFS state ofn
21 qubits corresponding toKn21 we can either add thenth
qubit asu0& (Kn5Kn2111) or asu1& (Kn5Kn2121). Each
DFS state can be built sequentially from the first qubit o
ward by adding successivelyu0& or u1&, and is uniquely de-
fined by a sequenceK1 , . . . ,Kn of eigenvalues. In the
graphical representation of Fig. 1 the horizontal axis ma
n, the number of qubits up to which the state is already bu
and the vertical axis showsKn , the difference~number of
0’s2number of 1’s! up to thenth qubit. Adding au0& at the
n11th step will correspond to a line pointing upwards, ad
ing a u1& to a line pointing down. Each DFS state ofn qubits
having eigenvaluelK5Kn , is thus in one-to-one correspon
dence with a path on the lattice from the origin to (n,Kn).

Consider the first nontrivial case,n52, which gives rise
to one DFS qubit: DFS2(0). This corresponds to the tw
statesu0L&5u01& @path 2 in Fig. 1# and u1L&5u10& ~path 3!
with K250. The remaining Hilbert space is spanned by
one-dimensional DFS2(2) u00& ~path 1! corresponding to
K252, and DFS2(22) u11& ~path 4! corresponding toK2
522. The exchangeE12 flips u0L& andu1L& ~paths 2 and 3!,
and leaves the other two paths unchanged. The interac
A125diag(0,0,1,0) induces a phase onu1L&5u10& ~path 3!.
Their commutator forms an encodedsy acting entirely
within the DFS2(0) subspace. Its commutator withE12 in
turn forms an encodedsz with the same property. Togethe
they form the~encoded! Lie algebra su~2! acting entirely
within this DFS. The Lie algebra is completed by formin
the commutator between theseȲ andZ̄ operations. To sum-
marize:

Ȳ125 i @Ā,E12#5S 0 0 0 0

0 0 2 i 0

0 i 0 0

0 0 0 0

D , ~49!

Z̄12[ i @E12,Ȳ12#,

X̄12[ i @Ȳ12,Z̄12#. ~50!

We call the property of acting entirely within the specifie
DFS independence, meaning that the corresponding Ha
tonian has zero entries in the rows and columns corresp
ing to the other DFSs@DFS2(2)5u00& and DFS2(22)
5u11& in this case#. When the Hamiltonian is exponentiate
the corresponding gate will act as identity on all DFSs exc
DFS2~0!.

To summarize these considerations, the Lie alge
formed by H0

25$X̄,Z̄% is su~2!, and generates SU~2! on
DFS2(0) by exponentiation. In addition, this is an indepe
dent SU~2!, namely, these operations act as identity on
other DFSs: when written as matrices over the basis of D
states, their generators inH0

2 have zeroes in the rows an
columns corresponding to all other DFSs.
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In the following we show how this construction genera
izes ton.2 qubits, by proving the following theorem:

Theorem 4: For anyn>2 qubits undergoing weak collec
tive decoherence, there exist sets of HamiltoniansHKn

n @ob-

tained fromH of Eq. ~47! via scalar multiplication, addition
and Lie commutator# acting as su(dKn

) on the DFS corre-

sponding to the eigenvalueKn . Furthermore each set ac
independently on this DFS only~i.e., with zeroes in the ma
trix representation corresponding to their action on the ot
DFSs!.

Before proving this theorem, we first explain in detail th
steps taken in order to go from then52 to then53 case, so
as to make the general induction procedure more transpa

The structure of the DFSs forn52 and 3 qubits is

DFS2~2!5$u00&%, DFS2~0!5H u01&

u10&
,

DFS2~22!5$u11&%,

DFS3~3!5$u000&%, DFS3~1!5H u001&

u010&

u100&

,

DFS3~21!5H u011&

u101&

u110&

, DFS3~23!5$u111&%. ~51!

DFS3(3) is obtained by appending au0& to DFS2(2).
Similarly DFS3(23) is obtained by appending au1& to
DFS2(22). Graphically, this corresponds to moving alon
the only allowed pathway from DFS2(2) @DFS2(22)# to
DFS3(3) @DFS3(23)#, as shown in Fig. 1. The lowest an
highestlK for n qubits will always be made up of the sing
pathway connecting the lowest and highestlK for n21 qu-
bits. The structure of DFS3(61) is only slightly more com-
plicated. DFS3(1) is made up of one state,u001&, which
comes from appending au1& ~moving down! to DFS2(2).
We call u001& a ‘‘Top-state’’ in DFS3(1). The two other
states,u010& and u100&, come from appendingu0& ~moving
up! to DFS2(0). Similarly, we call u010& and u100&
‘‘Bottom-states’’ in DFS3(1). DFS3(21) is constructed in
an analogous manner~Fig. 1!.

We showed above that it is possible to perform indep
dent su~2! operations on DFS2(0). DFS2(62) are also both
acted upon independently, but because they are o
dimensional subspaces, independence implies that su~2! op-
erations annihilate them. Since the states$u010&,u100&%
PDFS3(1) and the states$u011&,u101&%PDFS3(21) both
have$u01&,u10&%PDFS2(0) as their first two qubits, one im
mediate consequence of the independent action on DFS2(0)
is that one can simultaneously perform su~2! operations on
the corresponding daughter subspaces created by expan
DFS2(0) into DFS3(61). The first step in the general induc
tive proof is to eliminate this simultaneous action and to
independently on each of these subspaces~the ‘‘indepen-
dence step’’!. To see how this is achieved, it is convenient
7-13
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represent the operators acting on the eight-dimensional
bert space of 3 qubits in the basis of the 4 DFSs:

The simultaneous action on DFS3(61) can now be visu-
alized in terms of bothM 61 being nonzero. Let us show how
to obtain an action where, say, justM1 is nonzero. This can
be achieved by applying the commutator of two operat
with the property that their intersection has nonvanish
action just onM1. This is true for theT23

P andX̄12 Hamilto-
nians:T23

P annihilates every state except those that areu00&
over qubits 2 and 3, namelyu100&PDFS3(1) and u000&
PDFS3(3). This implies that the only nonzero blocks in i
matrix are

M3~T23
P !51, M1~T23

P !5S 0 0

0 0

1
D . ~52!

On the other hand,X̄12 is nonzero only on those states th
are u01& or u10& on qubits 1 and 2. Therefore it will be
nonzero on all 3-qubit states that haveu01& or u10& as ‘‘par-
ents.’’ This means that in its matrix representationM 6350
and

M1~X̄12!5S 0

0 1

1 0
D , M 21~X̄12!5S 0 1

1 0

0
D .

~53!

Clearly, taking the product ofT23
P and X̄12 leaves nonzero

just the lower 232 block ofM1, and this is the crucial point
it shows that an independent action on DFS3(1) can be ob-
tained by forming their commutator. Specifically, since t
lower 232 block of M1(T23

P ) is just 1
2 (I2sz):

i @T23
P ,X̄12#5Ȳ$u100&,u010&% , ~54!
04230
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i.e., this commutator acts as an encodedsy inside the

$u100&,u010&% subspace of DFS3(1). Similarly, Z̄$u100&,u010&%

5( i /2)@Ȳ$u100&,u010&% ,X̄12#. Together $Ȳ$u100&,u010&% ,
Z̄$u100&,u010&% generate su~2! acting independently on the
$u100&,u010&% subspace of DFS3(1), which we achieved by
subtracting out the action on DFS3(21).

In an analogous manner, an independent su~2! can be pro-
duced on the$u011&,u101&% subspace of DFS3(21) by using
the Hamiltonians acting on DFS2(0) in conjunction withT23

Q

to subtract out the su~2! action on DFS3(1).5 Thus we can
obtain independent action for each of the daughters
DFS2(0), i.e., separate actions on the subspace spanne
$u010&,u100&% and$u011&,u101&%.

Having established independent action on the two s
spaces of DFS3(1) and DFS3(21) arising from DFS2(0),
we need only show that we can obtain the full action
DFS3(1) and DFS3(21). For DFS3(1) we need to mix the
subspace$u010&,u100&% over which we can already perform
independent su~2!, with the u001& state. To do so, note tha
the effect of the exchange operationE23 is to flip u001& and
u010&, and leaveu100& invariant. Thus the matrix represen
tation of E23 is

M1~E23!5S 0 1

1 0

1
D . ~55!

Unfortunately, E23 has a simultaneous action o
DFS3(21). This, however, is not a problem, since we ha
already constructed an independent su~2! on DFS3(1) ele-
ments. Thus we can eliminate the simultaneous action
simply forming commutators with these su~2! elements. The
Lie algebra generated by these commutators will act in
pendently on all of DFS3(1). In fact we claim this Lie alge-
bra to be all of su~3! ~see Appendix B for a general proof!. In
other words, the Lie algebra spanned by the su~2! elements
$sx ,sy ,sz% acting on the subspace$u100&,u010&%, together
with the exchange operationE23, generate all of su~3! inde-
pendently on DFS~1!. A similar argument holds for
DFS3(21). This construction illustrates the induction ste
we have shown that it is possible to perform independ
su(dK) actions on all four of the DFS3(K) (K563,61),
given that we can perform independent action on the th
DFS2(K) (K561,0). In Fig. 2 we have further illustrate
these considerations by depicting the action of exchange
two of the 4-qubit DFSs. Let us now proceed to the gene
proof.

Proof: By induction.

5SinceT23
Q annihilates every state except those that areu11& over

qubits 2 and 3, namely u011&PDFS3(21) and u111&
PDFS3(23), the only nonzero blocks in its matrix are

M23~T23
Q !51, M 21~T23

Q !5S 1

0 0

0 0
D .
7-14
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The casen52 already treated above will serve to initia
ize the induction. Assume now that the theorem is true
n21 qubits and let us show that it is then true forn qubits as
well.

First note that each DFSn(K) is constructed either from
the DFSn21(K21) ~to its lower left! by adding au0& for the
nth qubit, or from DFSn21(K11) ~to its upper left! by add-
ing a u1&: the states in DFSn(K) correspond to all paths
ending in (n,K) that either come from below~B! or from the
top ~T!. See Fig. 3.

If we apply a certain gateU5exp(iHt) to DFSn21(K
11), then this operation will induce the sameU on
DFSn(K), by acting on all paths~states! entering DFSn(K)
from above. At the same timeU is induced on DFSn(K
12) by acting on all paths entering this DFS from belo

FIG. 2. Graphical representation of the action of exchange
DFS states for weak collective decoherence. Exchange acts t
multaneously flip different paths to a given DFSn(Kn). Axes and
labels are as defined in Fig. 1.Ei j denotes the exchange of thei th
and j th qubits. The matrices displayed at right are the represe
tions of E34 on DFS4(0) ~lower! and DFS4(2) ~upper!.

FIG. 3. Detailed structure of the pathways connecting adjac
DFSs in the weak collective decoherence case, with the actio
the different su Lie algebras indicated by the superposed he
arrows. DFSn(K) denotes the DFS arising fromn qubits and having
eigenvalueK ~see text!.
04230
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So, U affects two DFSs simultaneously. In other words, t
set of valid HamiltoniansHK11

n21 @acting onn21 qubits and
generating su(dK11)# on DFSn21(K11), that we are given
by the induction hypothesis, induces a simultaneous actio
su(dK11) on DFSn(K) ~on the paths coming from abov
only! and DFSn(K12) ~on the paths coming from below
only!. Additionally, it does not affect any othern-qubit DFS,
since we assumed that the action on DFSn21(K11) was
independent, and the onlyn-qubit DFSs built from
DFSn21(K11) are DFSn(K) and DFSn(K12). These con-
siderations are depicted schematically in Fig. 3.

We now show how to annihilate, for a given nontrivi
~i.e., dimension.1! DFSn(K), the unwanted simultaneou
action on other DFSs~the ‘‘independence step’’!. Then we
proceed to obtain the full su(dK), by using the su(dK61) on
DFSn21(K61) that are given by the induction hypothes
~the ‘‘mixing step’’!.

1. Independence

Let us call all thetK paths converging on DFSn(K) from
above ‘‘Top-states,’’ or T-states for short, and thebK paths
converging from below ‘‘Bottom-~or B! states’’ ~recall that
there is a one-to-one correspondence between paths
states!. The total number of paths converging on a giv
DFS is exactly its dimension, sodK5tK1bK . By using the
induction hypothesis on DFSn21(K11) we can obtain
su(tK) ~generated byHK11

n21 ) on the T-states of DFSn(K),
which will simultaneously affect the B-states in the high
lying DFSn(K12) as su(bK12) ~note thattK5bK12). The
set HK11

n21 is nonempty only ifn23>K11>2(n23) @be-
cause the ‘‘highest’’ and ‘‘lowest’’ DFS are always one
dimensional and su(1)50#. If this holds then DFSn(K12)
‘‘above’’ DFSn(K) is nontrivial ~dimension.1), and there
are paths in DFSn(K) ending inu11& ~‘‘down, down’’!. This
is exactly the situation in which we can useTn21,n

Q to wipe
out the unwanted action on DFSn(K12): recall thatTn21,n

Q

annihilates all states except those ending inu11&, and there-
fore affects nontrivially only these special T-states in ea
DFS. Since the operations inHK11

n21 affect only B-states on
DFSn(K12), Tn21,n

Q commutes withHK11
n21 on DFSn(K

12). Therefore the commutator ofTn21,n
Q with elements in

HK11
n21 annihilates all states not in DFSn(K).6 To show that

commuting Tn21,n
Q with HK11

n21 generates su(tK) on the
T-states of DFSn(K) we need the following lemma, which
shows how to form su(d) from an overlapping su(d21) and
su(2):

Enlarging Lemma: Let H be a Hilbert space of dimensio
d and letu i &PH. Assume we are given a set of Hamiltonia
H1 that generates su(d21) on the subspace ofH that does
not containu i & and another setH2 that generates su~2! on the
subspace ofH spanned by$u i &,u j &%, where u j & is another

6The argument thus far closely parallels the discussion ab
showing how to generate an independent su~2! on the$u011&,u101&%
subspace of DFS3(21), starting from the su~2! on DFS2(0) and
T23

Q .
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state inH. Then@H1 ,H2# ~all commutators! generates su(d)
on H under closure as a Lie algebra~i.e., via scalar multipli-
cation, addition, and Lie commutator!.

Proof: See Appendix C.
Now consider two statesu i &,u j &PDFSn(K) such thatu i &

ends inu11& and u j & is a T-state, but does not end inu11&.
Then we can generate su~2! on the subspace spanned
$u i &,u j &% as follows: ~i! We use the exchange interactio
X̄ i j 5u i 8&^ j 8u1u j 8&^ i 8u @a prime indicates the bitstring with
the last bit~a 1 in this case! dropped# in su(tK)PHK11

n21 to
generate a simultaneous action on DFSn(K) and DFSn(K
12). This interaction is represented by a 232 sx matrix in
the subspace spanned by$u i &,u j &%. ~ii ! Tn21,n

Q is represented
by the 232 matrix diag(1,0)5 1

2 (I1sz) in the same sub-
space, and commutes withX̄ i j on DFSn(K12) @since X̄ i j

affects only B-states in DFSn(K12), andTn21,n
Q is nonzero

only on states ending inu11&]. Thus we can use it to creat
an independent action on DFSn(K) alone: Ȳ i j

5 i @Tn21,n
Q ,X̄ i j #, Z̄ i j 5 i /2@Ȳ i j ,X̄ i j #.

Together $Ȳ i j ,Z̄ i j % generate su~2! independently on
$u i &,u j &%PDFSn(K). Since these operators vanish eve
where except on DFSn(K), their commutators with element
in HK11

n21 @acting as su(tK)# will annihilate all other DFSs.
Therefore using the enlarging lemma, in this way all ope
tions in su(tK) acting on DFSn(K) only can be generated.

So far we have shown how to obtain an independ
su(tK) on the T-states of DFSn(K) using HK11

n21 ~for K<n
24). To obtain an independent su(bK) on the B-statesof
DFSn(K) we use Hamiltonians inHK21

n21 @acting on
DFSn21(K21) – the DFS from below#. This will generate a
simultaneous su(bK) in DFSn(K) and su(tK22) in DFSn(K
22). To eliminate the unwanted action on DFSn(K22) we
apply the previous arguments almost identically, except
now we useTn21,n

P to wipe out the action on all states exce
those ending inu00&. We thus get an independent su(bK) on
DFSn(K). Together, the ‘‘above’’ and ‘‘below’’ construc
tions, respectively, provide independent su(tK) and su(bK)
on DFSn(K). Finally, note that we did not really need bo
T i j

P andT i j
Q , since once we established independent action

the T-states, we could have just subtracted out this ac
when considering the B-states. Also, the specific choice
T i j

P,Q was rather arbitrary~though convenient!: in fact almost
any other diagonal interaction would do just as well.

2. Mixing

In order to induce operations between the two sets
paths ~from ‘‘above’’ and from ‘‘below’’! that make up
DFSn(K) consider the effect ofEn21,n . This gate does no
affect any paths that ‘‘ascend’’ two steps to (n,K) ~corre-
sponding to bitstrings ending inu00&) and paths that ‘‘de-
scend’’ two steps~ending inu11&), but it flips the paths tha
pass from (n22,K) via (n21,K11) with the paths from
(n22,K) via (n21,K21) ~see Fig. 3!. It does this for all
DFSs simultaneously.

In order to get a full su(dK) on DFSn(K) we need to
‘‘mix’’ su(tK) ~on the T-states! and su(bK) ~on the B-states!
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which we already have. We show how to obtain an indep
dent su(2) between a T-state and a B-state. By the enlar
lemma this generates su(dK).

Sincen>3 DFSn(K) contains states terminating inu00&
and/or u11&. Let us assume, without loss of generality, th
states terminating inu00& are present, and letu i & be such a
state~B-state!. Let u j & be a B-state not terminating inu00&,
and let uk&5En21,nu j & (uk& is a T-state!. Let Z̄ i j 5u i &^ i
u2u j &^ j uPsu(bK), and recall that we have independe
su(bK). Then as is easily checked,i @En21,n ,Z̄ i j #[Ȳ jk yields
sy between u j & and uk& only.7 In addition, Z̄ jk[( i /2)
3@En21,n ,Ȳ jk# givessz betweenu j & and uk&, thus complet-
ing a generating set for su(2) on the B-stateu j & and the
T-stateuk&, that affects these two states only and annihila
all other states. This completes the proof.

To summarize, we have shown constructively that it
possible to generate the entire Lie algebra su(dK) on a given
weak collective-decoherence DFSn(K) of dimension dK ,
from the elementary composition of the operations of sca
multiplication, addition, and Lie commutators~conjugation
by unitaries was not necessary in the WCD case!. Moreover,
this su(dK) can be generated independently on each D
implying that universal quantum computation can be p
formed inside each DFSn(K). Naturally, one would like to
do this on the largest DFS. Since given the number of qu
n the dimensions of the DFSs aredK5(K

n ), the largest DFS is
the decoherence-free subspaceK50. In principle it is pos-
sible, by virtue of the independence result, to universa
quantum compute in parallel on all DFSs.

D. State preparation and measurement on the weak collective
decoherence DFS

To make use of a DFS for encoding information in
quantum computer, in addition to the universal quant
computation described above, it must also be possible to
tially prepare encoded states and to decode the quantum
formation on the DFS at the end of a computation. Encod
requires that the density matrix of the prepared states sh
have a large overlap with the DFS. Note that it is not nec
sary to prepare states that have support exclusively wi
the DFS, i.e., that have no component outside of the D
This follows from the fact that in our construction, while
computation is performed, there is no mixing of states ins
and outside of the DFS. If an initially prepared state is ‘‘co
taminated’’ ~has some support outside the DFS we want
compute on!, then the result of the computation will have th
same amount of contamination, i.e., the initial error does
spread.

For example, suppose we can prepare the stater5(1
2p)uc&^cu1puc'&^c'u whereuc& is a state of a particula
DFS anduc'& is a state outside of this DFS. Then the com
putation will proceed independently on the DFS and
states outside of the DFS. Readout will then obtain the re
of the computation with probability 12p. Repeated applica

7Since En21,n5u i &^ i u1uk&^ j u1u j &^ku1O, where O is some ac-
tion on an orthogonal subspace.
7-16
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THEORY OF DECOHERENCE-FREE, FAULT-TOLERANT . . . PHYSICAL REVIEW A 63 042307
tion of the quantum computation will give the desired res
to arbitrary confidence level.

There are many choices for the initial states of a com
tation and the decision as to which states to prepare sh
be guided by the available gates and measurements an
accuracy that is achievable. For efficient computation o
should try to maximize the overlap of the prepared state w
the desired initial DFS state.

For the WCD case preparation of initial pure states is v
simple. Suppose we are concerned with theSz error WCD-
DFS. Pure state preparation into such a DFS then co
sponds to the ability to prepare a state which has sup
over states with a specific number ofu0& andu1& ~eigenstates
of the sz operator!. This is particularly simple if measure
ments in thesz basis (u0&,u1&) as well assx gates~to ‘‘flip’’
the bits! are available.

The second crucial ingredient for computation on a D
~in addition to preparation! is the decoding or readout o
quantum information resulting from a computation. On
again, there are many options for how this can be perform
For example, in the WCD case one can make a measure
which distinguishes all of the DFSs and all of the sta
within this DFS by simply making a measurement in thesz
basis on every qubit. Further, all measurements with a gi
number of distinct eigenvalues can be performed by first
tating the observable into one corresponding to a meas
ment in the computational basis~which, in turn, corresponds
to a unitary operation on the DFS! and then performing the
given measurement in thesz basis, and finally rotating back
There are other situations where one would like to, s
make a measurement of an observable over the DFS w
has only two different eigenvalues. This type of measu
ment can be most easily performed by a conjoined meas
ment @40#. In this scheme, one attaches another DFS to
original DFS, forming a single larger DFS. Then, assum
universal quantum computation over this larger DFS one
always perform operations which allow a measuremen
the first DFS by entangling it with the second DFS, a
reading out~destructively as described for the WCD abov!
the second DFS. For example, suppose the first DFS enc
two bits of quantum information,uk,l &L , k,l 5$0,1%, and the
second DFS encodes a single bit of quantum informa
$u0&L ,u1&L%. Then one can make a measurement of the
servablesz^ I on the first DFS by performing an encode
controlled-NOT operation between the first and the seco
DFS, and reading out the second DFS in the encodedsz
basis. For the WCD case the ability to make this destruc
measurement on the ancilla~not on the code! simply corre-
sponds to the ability to measure singlesz operations.

Finally, we note that for a WCD-DFS there is a destru
tive measurement which distinguishes between differ
DFSs ~corresponding to a measurement of the number
u1& ’s!. One can fault-tolerantly prepare a WCD-DFS state
repeatedly performing such a measurement to guarantee
the state is in the proper DFS. The conjoined measurem
procedures described above for any DFS are naturally fa
tolerant in the sense that they can be repeated and are
destructive@40,51#. Thus fault-tolerant preparation and d
coding is available for the WCD-DFS.
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VII. STRONG COLLECTIVE DECOHERENCE

Strong collective decoherence onn qubits is characterized
by the three system operatorsSx , Sy , andSz . These opera-
tors form a representation of the semisimple Lie alge
su(2). ThealgebraA generated by these operators can
decomposed as8

A> %

J50(1/2)

n/2

InJ
^ gl~2J11,C!, ~56!

where J labels the total angular momentum of the corr
sponding Hilbert space decomposition~and hence the 0 o
1/2 depending on whethern is even or odd, respectively! and
gl(2J11,C) is the general linear algebra acting on a space
size 2J11. The resulting decomposition of the system H
bert space

HS> %

J50(1/2)

n/2

CnJ
^ C2J11 ~57!

is exactly the reduction of the Hilbert states into differe
Dicke states@60,61#. The multiplicity for eachJ is given by
@61# :

nJ5
~2J11!n!

~n/21J11!! ~n/22J!!
. ~58!

8Note that as a complex algebra$Sx ,Sy ,Sz% span all of gl~2!, not
just su(2).

FIG. 4. Graphical representation of DFS states for strong c
lective decoherence~SCD!. The horizontal axis is the number o
qubits,n, just as in Fig. 1 for WCD. The vertical axis is now th
total angular momentumJ obtained by summing angular momen
of n spin 1/2 particles representing then qubit, rather than just the
z component of this. The DFSs are denoted by DFSn(J) as before.
Each state in the DFS is represented by a pathway from the o
along the arrows as indicated. The insert shows the matrix struc
of operators acting on DFS6(1), given in terms of TT-, TB-, BT-,
and BB-states.
7-17
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This multiplicity is just the degeneracy associated with
angular momentumJ. Equation~56! shows that givenJ, a
stateuJ,l,m& is acted upon as identity on itsl component.
Thus a DFS is defined by fixingJ andm. As we will show
later, the degeneracy indexl corresponds to the paths lea
ing to a given point (n,J) on the diagram of Fig. 4. In the
strong collective decoherence case, we shall denote
n-qubit DFS labeled by a particular angular momentumJ, by
DFSn(J).

The DFSs corresponding to the differentJ values for a
given n can be computed using standard methods for
addition of angular momentum. We use the convention t
u1& represents au j 51/2,mj51/2& particle andu0& represents
ix
t
d

-

04230
e

he

e
at

a u j 51/2,mj521/2& particle in this decomposition although
of course, one should be careful to treat this labeling
strictly symbolic and not related to the physical angular m
mentum of the particles.

The smallestn which supports a DFS and encodes at le
a qubit of information isn53 @48#. For n53 there are two
possible values of the total angular momentum:J53/2 or J
51/2. The fourJ53/2 statesuJ,l,m&5u3/2,0,m& (m5mJ
563/2,61/2) are singly degenerate; theJ51/2 states have
degeneracy 2. They can be constructed by either addin
J1251 ~triplet! or a J1250 ~singlet! state to aJ351/2 state.
These two possible methods of adding the angular mom
tum to obtain aJ51/2 state are exactly the degeneracy of t
algebra, i.e.,l51,2. The fourJ51/2 states are:
the

system:
u0L&55
U12,0,0L 5u0,0& ^U12 ,2

1

2L 5
1

A2
~ u010&2u100&!

U12,0,1L 5u0,0& ^U12 ,
1

2L 5
1

A2
~ u011&2u101&!,

u1L&55
U12,1,0L 5

1

A3
S 2A2u1,21& ^U12 ,

1

2L 1u0,0& ^U12 ,2
1

2L D5
1

A6
~22u001&1u010&1u100&!

U12,1,1L 5
1

A3
SA2u1,1& ^U12 ,2

1

2L 2u1,0& ^U12 ,
1

2L D5
1

A6
~2u110&2u101&2u011&!,

~59!

where in the first column we indicated the grouping forming a logical qubit; in the second we used theuJ,l,m& notation; in the
third we used tensor products of the formuJ12,mJ12

& ^ uJ3 ,mJ3
&; and in the fourth the states are expanded in terms of

single-particleu j 51/2,mj561/2& basis using Clebsch-Gordan coefficients. These states form a decoherence-free sub

the decomposition of Eqs.~56! and ~57! ensures that the states$u 1
2 ,0,0&,u 1

2 ,0,1&% are acted upon identically by anySa , i.e.,

they can be mixed among themselves but not with states inu1L&. The same holds for the states$u 1
2 ,1,0&,u 1

2 ,1,1&%. Thus
information of a qubitau0L&1bu1& should be encoded into these states as

~60!
is
d in

or
the
where g i j form the components of a valid density matr
~unity trace and positive!. The important point to note is tha
one encodes quantum information into the degeneracy in
l. Using Eq.~56! it follows that each of theSa’s act onr in
such a manner that only them component is changed. In
deed, theSa’s act like a correspondingsa in the m basis
because this basis is two-dimensional, andsa are the two-
ex

dimensional irreducible representations of su(2). If these are
the only error processer then the encoded information
completely protected. These considerations are illustrate
detail for the exchange interaction in Sec. VII C.

The smallest decoherence-free subspace~as opposed to
subsystem! supporting a full encoded qubit comes about f
n54. Subspaces for the SCD mechanism correspond to
7-18
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degeneracy of the zero total angular momentum eigens
~there are also two decoherence-free subsystems with de
eracy 1 and 3). This subspace is spanned by the states

u0L&5u0,0,0&5u0,0& ^ u0,0&

5
1

2
~ u01&2u10&)~ u01&2u10&)

u1L&5u0,1,0&

5
1

A3
~ u1,1& ^ u1,21&2u1,0&

^ u1,0&1u1,21& ^ u1,1&)

5
1

A12
~2u0011&12u1100&2u0101&

2u1010&2u0110&2u1001&). ~61!

The notation is the same as in Eq.~59!, except that in the
third column we have used the notationuJ12,mJ12

&
^ uJ34,mJ34

& which makes it easy to see how the angu
momentum is added. One encodes intol, as in Eq.~60!.

As seen from Eqs.~59! and ~61!, there is a variety of
useful bases which one can choose for the SCD-DFSs.
now show how the generic basisuJ,l,m& can be given both
a graphical and an angular momentum interpretation. C
sider the addition of angular momentum as more particles
included, similar to the construction we used in the WC
case. To construct then qubit SCD-DFS for a specificJ, one
takes DFSn21(J21/2) and DFSn21(J11/2), and uses the
angular momentum addition rules to add another qubitj
51/2). Table I presents the degeneracy of theJth irreducible
representation forn qubits. The entries are obtained just as
Pascal’s triangle, except that half of the triangle~the bottom
according to the scheme of Table I! is missing.

Table I demonstrates how the degeneracies of then
21)-qubit J61/2 irreducible representations~irreps!, i.e.,
the dimensions of DFSn21(J61/2), add to determine the
dimension of DFSn(J). This method of addition of the angu
lar momentum leads to a natural interpretation of
uJ,l,m& basis for the SCD-DFSs which we now present.

Define the partial collective operators

Sa
k [Sa

(1,2, . . . ,k)5(
i 51

k

sa
i . ~62!

This can be used to find a set of mutually commuting ope
tors for the SCD-DFSs: the partial total angular moment
operators

~Sk!25 (
a5x,y,z

~Sa
k !2. ~63!

As shown in Appendix A:

@~Sk!2,~Sl !2#50 ;k,l . ~64!
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Thus the$(Sk)2% can be used to label the SCD-DFSs by th
eigenvaluesJk .

In order to make the connection between the addition
angular momentum and the Dicke states one should, h
ever, use

sa
k [(

i 51

k
1

2
sa

i 5
1

2
Sa

k . ~65!

With this definition (sk)25(a(sa
k )2 is just the operator

whose eigenvalue for theJth irrep of thek qubit case is
Jk(Jk11). We label the basis determined by the eigenval
of (sk)2 by

uJ1 ,J2 ,J3 , . . . ,Jn21 ,J;mJ&, ~66!

where

~sk!2uJ1 ,J2 ,J3 , . . . ,Jn21 ,J;mJ&

5Jk~Jk11!uJ1 ,J2 ,J3 , . . . ,Jn21 ,J;mJ&, ~67!

and where for consistency with theuJ,l,m& notation we use
J for Jn . As in the WCD case, the degeneracy which leads
the SCD-DFS can be put into a one-to-one corresponde
with a graphical representation of the addition of angu
momentum, shown in Fig. 2. Here, however, each step d
not simply correspond to adding au0& or u1& state but instead
corresponds to combining the previous spinJ particle with a
spin 1/2 particle to create aJ11/2 or uJ21/2u particle~note
the absolute value so that the total spin is positive!. In the
graphical representation of Fig. 4 the horizontal axis cou
qubits, and the vertical axis corresponds to the total ang
momentumJi up to thei th qubit~note the similarity to Table
I!. Each SCD-DFS state then corresponds to a path c
structed by successively moving up or down 1/2 unit of a
gular momentum, starting from a single qubit withJ151/2 .
For example, the two DFS3(1/2) states are$u1/2,0,1/2;
61/2&,u1/2,1,1/2;61/2&% ~corresponding, respectively, t
the paths ‘‘up, down, up’’ and ‘‘up, up, down’’ and
mJ351/2561/2), and the two DFS4(0) states are

$u1/2,0,1/2,0;0&,u1/2,1,1/2,0;0&%. Clearly, the set of paths
Jn[$J1 ,J2 ,J3 , . . . ,Jn21 ,Jn% with fixed Jn counts the de-
generacy of DFSn(Jn). Therefore we can identify the gener
degeneracy indexl ~of uJ,l,m&) with Jn . Similarly, the
dimensionality indexm can now be identified withmJn

. Fi-

nally, as claimed aboveJ is just the finalJn .

A. The stabilizer and error correction properties

Note from Eq. ~62! that the system operatorsSa5Sa
n .

Therefore they can only affect the last componentuJn ;mJn
&

of the DFS states. By the identification of the degenera
index l with the paths$J1 , . . . ,Jn21 ,J%, and from the gen-
eral expression~56! for the action of theSa , we know that
Sa acts only on the dimensionality component:

SauJ1 , . . . ,Jn21 ,J;mJ&5uJ1 , . . . ,Jn21 ,J& ^ ~PaumJ&),
~68!
7-19
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where thePa are a 2J11 dimensional representation o
su(2) acting directly on theumJ& components of the DFS
The corresponding DFS stabilizer is

D~vW !5D~vx ,vy ,vz!5expF (
a5x,y,z

va~Sa2I ^ Pa!G .
~69!

For the J50 DFSs this reduces to all collective rotatio
1contractions@27#:

D~vW !5expF (
a5x,y,z

vaSaG
5 ^

i 51

n

exp@vW •sW i #

5F I cosivW i1
sW •vW

uuvW uu
sinivW i G ^ n

,

whereuuvuu[((ava
2)1/2 may be complex. Thus DFSn(0) pro-

tects against all processes described by Kraus operators
are linear combinations of collective rotations1contractions
exp@vW•sW #. The situation forJÞ0 is more complicated to cal
culate analytically.

Let us now comment briefly on the error-correction a
detection properties of DFSn(0): Thestabilizer elements are
tensor products of identical 1-qubit operators, including
following elements of the Pauli group:X^ n, Y^ n, andZ^ n.
Thus for any odd-multiple 2k21,n of single qubit errors
X, Y, andZ there is an element in the stabilizer that an
commutes with it: The code can detect any such error.
J50 SCD-DFS is an error correcting code of distance 2

B. Nontrivial Operations

Are there any single-qubit operators which preserve
SCD-DFS~and thus allow for nontrivial operations on th
DFS!? There are no nontrivial single-qubit operators th
commute with allSa operators, since

@Sa ,sb
j #5(

i
@sa

i ,sb
j #5 i(

i
d i j «abgsg

i ~70!

which vanishes iffa5b. Therefore there are no single-qub
operators which preserve all SCD-DFSs simultaneously.

As for two-qubit operators, the only such Hermitian o
erators which commute with theSa are those that are pro
portional to the exchange interaction@Eq. ~44!#: Ei j uk& i u l & j
5u l & i uk& j , wherei , j label the qubits acted upon@37#. In both
the single- and two-qubit cases, there could be additio
operators in the generalized commutantT ~e.g., for n54
qubits there is an operator which mixes the differentJ’s and
preserves DFS4(0): T5uJ51,l1 ,m1&^J52,l1 ,m1u1H.c.).
We will not be concerned with such operations as they
not needed in order to demonstrate universality, and since
will show that the exchange operator is sufficient for a
SCD-DFS. Our task is thus to show that exchange inte
04230
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tions alone suffice to generate the entire SU(N) group on
eachN-dimensional DFS, in the SCD case.

C. Quantum computation on thenÄ3 and nÄ4
qubit SCD-DFS

We begin our discussion of universal quantum compu
tion on SCD-DFSs by examining the simplest SCD-D
which supports encoding of quantum information: then53
decoherence-free subsystem. We label these states as i
~59! by uJ,l,m&. Recall that theJ53/2 irrep is not degener
ate and theJ51/2 irrep has degeneracy 2. TheJ53/2 states

can be written asu 3
2 ,0,m&, with m5mJ563/2,61/2. Since

the action of exchange does not depend onm ~recall that it
affects paths, i.e., thel component only! it suffices to con-
sider the action on the representativem53/2 only: u111&. Let
us then explicitly calculate the action of exchanging the fi
two physical qubits on this state and the fourJ51/2 states.
Using Eq.~59!:

E12U32,0,
3

2L 5E12u111&5U32,0,
3

2L ,

E12U12,0,0L 5E12

1

A2
~ u010&2u100&)

5
1

A2
~ u100&2u010&)52U12,0,0L ,

E12U12,0,1L 5E12

1

A2
~ u011&2u101&)

5
1

A2
~ u101&2u011&)52U12,0,1L ,

E12U12,1,0L 5E12

1

A6
~22u001&1u010&1u100&)5U12,1,0L ,

E12U12,1,1L 5E12

1

A6
~2u110&2u101&2u011&)5U12,1,1L .

~71!

Focusing just on theJ51/2 states, the exchange action o
ul& ^ um& can thus be written as

E1252sz^ I . ~72!

Since the action of theSa operators on theJ51/2 states is
In1/2

^ gl(2) according to Eq.~56!, this explicit form forE12

confirms that is has the expected structure of operators in
commutant of the algebra spanned by theSa . It can also be
seen that quantum information should be encoded in theul&
component, as discussed before Eq.~60!.

Using similar algebra it is straightforward to verify tha
the effect of the three possible exchanges on then53 DFS
states is given by:
7-20
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E125S 1 0 0

0 21 0

0 0 1
D , E235S 1 0 0

0
1

2
2

A3

2

0 2
A3

2
2

1

2

D ,

E135S 1 0 0

0
1

2

A3

2

0
A3

2
2

1

2

D , ~73!

where the rows and columns of these matrices are labele
the basis elements$uJ53/2,l50&,uJ51/2,l50&,uJ51/2,l
51&%. As expected from general properties of the comm
tant, the exchange operators do not mix the differentJ irreps.
Now,

1

3
~E121E131E23!5S 1 0 0

0 0 0

0 0 0
D ,

1

2
~2E121E131E23!5S 0 0 0

0 1 0

0 0 21
D ,

1

A3
~E132E23!5S 0 0 0

0 0 1

0 1 0
D , ~74!

showing that the last two linear combinations of exchan
look like the Paulisz and sx on DFS3(1/2). Using a stan-
dard Euler angle construction it is thus possible to perfo
any SU~2! gate on this DFS. Moreover, it is possible to a
independently on DFS3(3/2) and DFS3(1/2). In other words,
we can perform U~1! on DFS3(3/2) alone, and SU~2! on
DFS3(1/2) alone. Note, however, that at this point we can
yet claim universal quantum computation on a register co
posed of clusters of DFS3(J)’s (J constant! because we have
not shown how to couple such clusters.

For n54 the Hilbert space splits up into oneJ52-irrep
@DFS4(2)#, three J51-irreps @DFS4(1)#, and two
J50-irreps@DFS4(0)#, see Table I. Direct calculation of th
effect of exchange on these DFSs shows that we can i
pendently perform su(1)~i.e., zero!, su(3), and su(2). In
particular, we find that@28,40#:

X5
1

A3
~E232E13!, Y5

i

2A3
@E232E13,E34#,

Z5
i

2
@Y,X#52E12 ~75!
04230
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act as the corresponding su(2) Pauli operators on DFS4(0)
only. Further, the following operators act independently
the J51-irreps~rows and columns are labeled byl50,1,2.
The action occurs simultaneously on all threem components
corresponding to a givenl):

Y135
3i

2A2
@E12,E34#5S 0 0 2 i

0 0 0

i 0 0
D ,

X135
i

2
@E12,Y13#5S 0 0 1

0 0 0

1 0 0
D ,

Z135
i

2
@Y13,X13#5S 1 0 0

0 0 0

0 0 21
D ,

Y235
2i

A3
@E23,Z13#5S 0 0 0

0 0 2 i

0 i 0
D . ~76!

These operators clearly generate su(3), andhence we have
an independent SU~3! action on DFS4(1).

D. Universal quantum computation on thenÐ5
qubit SCD-DFSs

We are now ready to prove our central result: that us
only the two-body exchange Hamiltonians every unitary o
eration can be performed on a SCD-DFS. More specifica

Theorem 5: For anyn>2 qubits undergoing strong col
lective decoherence, there exist sets of HamiltoniansHJ

n ob-
tained from exchange interactions only via scalar multiplic
tion, addition, Lie commutator, and unitary conjugatio
acting as su(dJ) on the DFS corresponding to the eigenval
J. Furthermore, each set acts independently on this DFS
~i.e., with zeroes in the matrix representation correspond
to their action on the other DFSs!.

In preparation for the proof of this result let us note se
eral useful facts:

~i! The exchange operators do not change the value omJ
because they are in the commutant ofA5$Sa% @recall Eq.
~68!#. Therefore in order to evaluate the action of the e

TABLE I. Strong collective decoherence DFS dimension
given by the degeneracynJ , Eq. ~58!.

J53 1
J5

5
2 1

J52 1 5
J5

3
2 1 4

J51 1 3 9
J5

1
2 1 2 5

J50 1 2 5
n51 n52 n53 n54 n55 n56
7-21
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change operators on the different DFSn(J) ~n given! it is
convenient to fixmJ , and in particular to work in the basi
given by the maximalmJ value (mJ5J). Expressions for
these ‘‘maximal’’ states in terms ofuJ1 ,J2 , . . . ,Jn22 ;mJ&
and the single qubit states of the last two qubits are give
Appendix B.

~ii ! Every (sk)2 can be written as a sum of exchange o
erators and the identity operation@28#. This follows from Eq.
~A1! and noting that the exchange operator can be expan
as

Ei j 5
1

2
~ I1sx

i sx
j 1sy

i sy
j 1sz

i sz
j !, ~77!

so that

~sk!25kS 12
k

4D I1
1

2 (
iÞ j 51

k

Ei j . ~78!

Thus (sk)2 is a Hamiltonian which is at our disposal.
We are now ready to present our proof by induction. R

call the DFS-dimensionality formula fornJ , Eq. ~58!. We
assume that it is possible to perform su(nJ) on each of the
different DFSn21(J) independently using only exchange o
erators and the identity Hamiltonian. Our construction abo
proves that this is true for 3 and 4 qubits. The assump
that the actions we can perform can be performed indep
dently translates into the ability to construct Hamiltonia
which annihilate all of the DFSs except a desired one
which they act as su(nJ).

As in the WCD case a specific DFSn(J) of dimensionnJ
splits into states which are constructed by the subtractio
angular momentum from DFSn21(J11/2) ~T-states!, or by
the addition of angular momentum to DFSn21(J21/2) ~B-
states! ~see Fig. 5!. Performing su(nJ11/2) on DFSn21(J
11/2) will simultaneously act on DFSn(J) and DFSn(J
11). In other words, su(nJ11/2) on DFSn21(J11/2) acts on
both the B-states of DFSn(J11) and on the T-states o
DFSn(J). We split the proof into three steps. In the first st
we obtain an su(2) set of operators which acts only
DFSn(J) and mixes particular B- and T-states. In the seco
04230
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step we expand the set of operators which mix B- a
T-states to cover all possible su(2) algebras between any
B- and T-states. Finally, in the third step we apply a Mixin
Lemma which shows that we can obtain the full su(nJ) ~i.e.,
also mix B-states and mix T-states!.

1. T- and B-mixing

There are two simple instances where there is no nee
show independent action in our proof:~i! The ~upper! J
5n/2 -irrep is always one-dimensional, so the action on i
always trivial ~i.e., the Hamiltonian vanishes and hence t
action is independent by definition!; ~ii ! For oddn the ‘‘low-
est’’ DFSn(1/2) is acted upon independently by the su(n0)
from DFSn21(0) @i.e., su(n0) cannot act ‘‘downward’’#. In
order to facilitate our construction we extend the notion of
and B-states one step further in the construction of the D
TB-states are those states which are constructed f
T-states on (n21)-qubits and from the B-states onn-qubit
states~see Fig. 5!. Similarly we can define the BT-, TT-, an
BB-states:

FIG. 5. Scheme to visualize the inductive proof of univers
computation using only the exchange Hamiltonian, for the stro
collective decoherence case. TB- and BT-states of DFSn(J) are
indicated. su(nJ21/2) acts on DFSn(J21) and on DFSn(J) via
DFSn21(J21/2). See Sec. VII D for details.
~79!

~80!
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Every DFSn(J) can be broken down into a direct sum
TT-, BT-, TB-, and BB-states; e.g., as seen in Fig. 4,
DFS6(1) there are 1 TT, 3 TB, 3 BT, and 2 BB states. No
that forJ5n/221 there are no TT-states, forJ50 there are
no BB- and BT-states, forJ51/2 there are no BB-states, an
otherwise there are as many TB as there are BT-states,

At this point it is useful to explicitly give the action o
exchange on the last two qubits of a SCD-DFS. Using
~B8! we find ~assuming the existence of the given states,
n large enough andJ not too large! the representation

En,n215S 1 0 0 0

0 2cos~uJ11! sin~uJ11! 0

0 sin~uJ11! cos~uJ11! 0

0 0 0 1

D TT

BT

TB

BB

,

~81!

where tan(uJ)52AJ(J11). Thus exchange acts to tran
form the BT- and TB-states entering a given DFS into line
combinations of one another, while leaving invariant the B
and TT-states.

Let us now consider the action of su(nJ21/2) from
DFSn21(J21/2) ~see Fig. 5!. It acts on DFSn(J21) and
DFSn(J) simultaneously. However, since the T-states
DFSn(J21) and the B-states of DFSn(J) share the same se
of quantum numbers$J1 , . . . ,Jn21%, the action of the
su(nJ21/2) operators is identical on these two sets of stat

We first deal with the case where the number of BT-sta
of DFSn(J) is greater than 1. As can be inferred from Fig.
this condition corresponds toJ,n/221 andn.4. We will
separately deal with theJ5n/221 case at the end of th
proof. Let ua& and ub& be any two orthogonal BT-states o
DFSn(J) ~i.e., states differing only by the paths on the fir
n22 qubits!. Corresponding to these are$ua8&,ub8&%: a pair
of orthogonal BT-states of DFSn(J). One of the elements in
su(nJ21/2) is the traceless operatorC5ua&^au2ub&^bu,
which we have at our disposal by the induction hypothe
Consideri @En,n21 ,C#: sinceEn,n21 acts as identity on BB-
states, even thoughC has an action on DFSn(J21) the com-
mutator acting on the BB-states of DFSn(J21) vanishes.
The action ofi @En,n21 ,C# on the BT- and TB-states can b
calculated by observing, using Eq.~81!, that the matrix rep-
resentations of C and En,n21 are, in the ordered
$ua8&,ub8&,ua&,ub&% basis:

C5diag~0,0,1,21!5
1

2
~ I ^ sz2sz^ sz!,

En,n215S 2cos~uJ! 0 sin~uJ! 0

0 2cos~uJ! 0 sin~uJ!

sin~uJ! 0 cos~uJ! 0

0 sin~uJ! 0 cos~uJ!

D
52cos~uJ!sz^ I1sin~uJ!sx^ I . ~82!

This yields
04230
.
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i @En,n21 ,C#52sin~uJ!sy^ sz

5 i sin~uJ!~2ua&^a8u1ua8&^au

1ub&^b8u2ub8&^bu!. ~83!

Now let uc& be a TT-state of DFSn(J). Such a state always
exists unlessJ5n/221, which is covered at the end of th
proof. Then there is an operatorD5ua8&^a8u2uc&^cu in
su(nJ11/2).

9 It follows that

Xaa8[
1

sin~uJ!
i †i @En,n21 ,C#,D‡5ua&^a8u1ua8&^au

~84!

acts like an encodedsx on ua& and ua8& and annihilates all
other states. Further, one can implement the commutato

Yaa85 i @Xaa8 ,D#5 i ~ ua&^a8u2ua8&^au!, ~85!

which acts like an encodedsy on ua& and ua8&. Finally, one
can constructZaa85 i @Xaa8 ,Yaa8#5ua&^au2ua8&^a8u. Thus
we have shown that forJ,n/221 we can validly~using
only exchange Hamiltonians! perform su(2) operations be
tween ua&, a specific B-state, andua8&, its corresponding
T-state, on DFSn(J) only.

2. Extending the su(2)’s

We now show that by using the operation of conjugati
by a unitary we can construct su(2) between any two B- a
T-states. To see this recall Eq.~30!, which allows one to take
a HamiltonianH and turn it via conjugation by a unitary gat
into the new HamiltonianHeff5UHU†. By the induction hy-
pothesis we have at our disposal every SU gate which act
the T-states of DFSn(J) @and simultaneously acts on th
B-states of DFSn(J11)# and also every SU gate which ac
on the B-states of DFSn(J) @and simultaneously acts on th
T-states of DFSn(J21)#. Above we have shown how to con
struct X, Y, and Z operators between specific T- an
B-states:ua8& andua&. Let u i 8& andu i & be some other T- and
B-states of DFSn(J), respectively. Then we have at our di
posal the gatePi 8 i5ua8&^ i 8u1u i 8&^a8u1ua&^ i u1u i &^au1O
where O is an operator which acts on a DFS other th
DFSn(J) ~included to makePi 8 i an SU operator!. It is simple
to verify that

X i 8 i5Pi 8 iXaa8Pi 8 i
†

5u i 8&^ i u1u i &^ i 8u, ~86!

which acts as an encodedsx betweenu i 8& and u i &. Note that
becauseXaa8 only acts on DFSn(J), X i 8 i will also only act
on the same DFS. Similarly one can constructY i 8 i

5Pi 8 iYaa8Pi 8 i
† andZ i 8 i5Pi 8 iZaa8Pi 8 i

† which act, respectively,
as encodedsy andsz on u i 8& and u i &. Thus we have shown
that one can implement every su(2) between any two T-
B-states in DFSn(J). Each of these su(2) operations is pe
formed independently on DFSn(J).

9We need to subtractuc&^cu in order to obtain a traceless operato
7-23
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3. Mixing T- and B-states

Next we use a lemma proved in Appendix C:
Mixing Lemma: Given is a Hilbert spaceH5H1% H2

where dimHj5nj . Let $u i 1&% and $u i 2&% be orthonormal
bases forH1 and H2, respectively. If one can implemen
the operators X i 1i 2

5u i 1&^ i 2u1u i 2&^ i 1u, Y i 1i 2
5 i u i 1&^ i 2u

2 i u i 2&^ i 1u, andZ i 1i 2
5u i 1&^ i 1u2u i 2&^ i 2u, then one can imple-

ment su(n11n2) on H.
Above we have explicitly shown that we can obtain eve

X i 1i 2
, Y i 1i 2

, and Z i 1i 2
acting independently on DFSn(J).

Thus direct application of the Mixing Lemma tells us that w
can perform su(nJ) independently on this DFS.

Special case of J5n/221: We have neglected
DFSn(n/221) because it did not contain two different BT
states~nor a TT-state!. The dimension of this DFS isn21.
We now show how to perform su(n21) on this DFS using
the fact that we have already established su(nJ5n/222) on
DFSn(n/222). First, note that by the induction hypothes
we can perform su(nJ5n/223/2) independently on
DFSn21(n/223/2). As above, this action simultaneously a
fects DFSn(n/221) and DFSn(n/222). However, since we
can perform su(nJ5n/222) on DFSn(n/222), we can subtrac
out the action of su(nJ5n/223/2) on DFSn(n/222). Thus we
can obtain su(nJ5n/223/2) on all of the B-states of
DFSn(n/221). But the exchange operatorEn,n21 acts to mix
the B-states with the single T-state of DFSn(n/221). Thus
we can construct an su(2) algebra between that sing
state and a single B-state in a manner directly analogou
the above proof forJ,n/221. Finally, by the enlarging
lemma it follows that we can obtain su(n21) on
DFSn(n/221).

This concludes the proof that the exchange interactio
independently universal on each of the different stro
collective-decoherence DFSs.

E. State preparation and measurement on the strong collective
decoherence DFS

At first glance it might seem difficult to prepare pu
states of a SCD-DFS, because these states are nontriv
entangled. However, it is easy to see that every DF subs
contains a state which is a tensor product of singlet state

u0D&5S 1

A2
D n/2

^ j 51
n/2 ~ u01&2u10&), ~87!

because these states have zero total angular momen
Thus a supply of singlet states is sufficient to prepare
subspace states. Further, DF subsystems always cont
state which is a tensor product of a DF subspace and a
state of the formu1& ^ •••^ u1&. This can be seen from Fig
4, where the lowest path leading to a specific DFSn(J) is
composed of a segment passing through a DF subspace~and
is thus of the formu0D&), and a segment going straight u
from there to DFSn(J). The corresponding state is equivale
to adding a spin-0~DF subspace! and a spin-J DF subsystem
~the uJ,mJ5J& state of the latter is seen to be made up
tirely of u1& ^ •••^ u1&). In general, addition of a spin-0
04230
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DFS and a spin-J DFS simply corresponds to tensoring th
two states. Note, however, that addition of two arbitrary D
subsystems into a larger DFS is not nearly as simp
concatenation of twoJÞ0 DFSs does not correspond
tensoring.

Pure state preparation for a SCD-DFS can thus be
simple as the ability to produce singlet states andu1& states
~it is also possible to use theuJ,mJ52J&5u0& ^ •••^ u0& or
any of the otheruJ,mJ& states plus singlets!. Other, more
complicated pure state preparation procedures are also
ceivable, and the decision as to which procedure to us
clearly determined by the available resources to manipu
quantum states. The pure state preparation of singlets
computational basis states has the distinct advantage
verification of these states should be experimentally ach
able. Such verification is necessary for fault-tolerant pre
ration @51#.

Measurements on the SCD-DFS can be performed by
ing the conjoined measurement scheme detailed in
WCD-DFS discussion@Sec. VI D#. In particular, by attach-
ing a SCD-DF subspace ancilla via such conjunction, o
can construct any conjoined measurement scenario. All
remains to be shown is how to perform a destructive m
surement on such an ancilla. In@40,62# such schemes ar
presented for then54 SCD-DF subspace which encodes
single qubit of information. We will not repeat the details
these schemes here, but note that they involve measurem
of single physical-qubit observables and thus are experim
tally very reasonable. Further, we note that the ability
perform a conjoined measurement scenario by conjoining
ancilla DFS composed of a single encoded-qubit can be u
to perform any possible conjoined DFS measurement s
nario. As mentioned in the WCD case, the conjoined m
surement procedures are fault-tolerant. Thus we have sh
how to perform fault-tolerant preparation and decoding
the SCD-DFS.

VIII. UNIVERSAL FAULT-TOLERANT COMPUTATION
ON CONCATENATED CODES

So far we have shown how to implement universal co
putation with local Hamiltonians on a DFS corresponding
a single block of qubits. This construction assumes that
only errors are collective. This is a very stringent symme
requirement, which obviously becomes less realistic as
number of particlesn increases significantly. It is thus desi
able to be able to deal with perturbations that break
collective-decoherence~permutation! symmetry. To this end
we have previously studied the effect of symmetry-break
perturbations on decoherence-free subspaces@27#, and have
proposed a concatenation method to make DFSs robust in
presence of such perturbations. The method embeds
blocks of four particles~each block constituting a single en
coded qubit! into a QECC@25#. The QECC in the outer laye
then takes care of any single encoded-qubit errors on eac
its constituent DFS-blocks. In fact, such a code can cor
for any ‘‘leakage’’ error taking a state outside of the DFS
transforming this into a single encoded qubit error on
outer QECC. By choosing an appropriate QECC it is th
7-24
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possible to deal with any type of noncollective error on t
encoded DFS-qubits. In particular, by using the ‘‘perfec
5-qubit code@63# it is possible to correct all independe
errors between blocks of four particles. In general, if one
robustly perform all of the operations needed to implemen
fault-tolerant quantum error correcting code on an enco
subsystem, then concatenation of this subsystem into su
fault-tolerant quantum error correcting code will natura
produce fault-tolerance. Therefore concatenation can
quite generally used with DFSs to deal with symmetry bre
ing errors and to obtain fully fault-tolerant quantum comp
tation, and is not limited to just the 4-qubit DFS proposed
@25#.

One problem with this construction to date was that,
order to correct on the outer QECC, it is necessary to p
form encoded operations on the constituent DFSs in a fa
tolerant way, using~realistic! local interactions. Specifically
it is necessary to be able to implement all single encod
qubit operations on the DFS-qubits of the outer QECC,
well as operations between two DFS-blocks~see @51# for
details!. Consequently, given that one can perform sin
qubit ~or ‘‘qupit’’ for higher-dimensional DFSs! operations
on each DFS-block as we have shown earlier in this pa
~Secs. VI and VII!, the only additional gate necessary
implement both error-correction and universal quantum co
putation on a concatenated QECC-DFS is any nonsepar
two-encoded-qubit gateK between any four states in the tw
DFS-blocks. One such gate is provided by a controlled-ph
operation which gives a phase of21 to u0L0L& and leaves
all other states unchanged. In fact, it is sufficient to be abl
perform this gateK between neighboring blocks onl
@11,12,64#. To construct such an encodedK between two
neighboring blocks, we assume that the corresponding ph
cal qubits are spatially close together during the switch
time of the gate. Since the symmetry of collective decoh
ence arises from the spatial correlation of the decohere
process, we can further assume that during this switch
time, both DFS-blocks couple to the same bath mode. T
assumption is physically motivated by the expectation t
collective decoherence occurs in the analog of the Di
limit of quantum optics, where the qubits have small spa
separations relative to the bath correlation length@60#. Then
the two DFS-clusters temporarily form a bigger DFS and
can use the universal operations we have constructed p
ously on this big DFS to implement the desired gateK .

Another issue arising with concatenation is the ability
fault-tolerantly detect leakage errors on a DFS. Concate
tion resulting in in unreliable leakage detection would
useless. However, this is not a problem here, since detec
can easily be performed when one has the ability to m
some fault-tolerant measurements on the DFS and als
perform universal manipulations over any combination
DFS states. Both of these are valid with the DFS-QE
concatenation, as we have summarized above. In partic
it is always possible to measure the relevant observables
leakage by~i! attaching ancilla encoded DFS states,~ii ! per-
forming the leakage syndrome detection routine onto the
cilla states, and~iii ! fault-tolerantly measuring this ancilla.

We reemphasize that the fault-tolerance in our propo
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scheme is not solely a result of properties of decoheren
free subsystems. Decoherence-free subsystems must be
bined with quantum error correcting codes to achieve
fault tolerant quantum computation. However, until rece
results@25,27#, as well as the results presented in this pap
it was not clear that the methods needed to perform the
erations on the decoherence-free subsystem level would
destroy the higher threshold results of the fault-toler
quantum error correcting methods. This paper, along w
previous results, demonstrates how measurements, co
enation, and computation can all be done with relative e
on a DFS in order to aid in the construction of a fully wor
able QECC-DFS scheme.

IX. SUMMARY AND CONCLUSIONS

In this paper we have settled the issue of quantum co
putation with realistic ~few-body! means on both
decoherence-free subspaces and decoherence-free~noiseless!
subsystems~DFSs! for two important forms of decoherence
collective phase damping~‘‘weak collective decoherence’’!
and collective phase damping plus collective dissipat
~‘‘strong collective decoherence’’!. This resolves an out-
standing question as to whether universal computation
these physically relevant DFSs by using just one- and tw
body Hamiltonians is possible. The answer is affirmative

The implications of this result for the usefulness of DF
are drastic. They put the theory of DFSs on an equal foot
with the theory of quantum error correction, in that the fu
repertoire of universal fault tolerant quantum computation
now available on DFSs for collective decoherence which
the most important pertinent decoherence process. Moreo
the strict assumption of collective decoherence can be li
by allowing for perturbing independent qubit errors. As w
proposed earlier it is possible to stabilize DFSs against s
errors by concatenation with a quantum error correcting c
~QECC!. However, to be able to implement error-correcti
and fault-tolerant universal computation on these conc
enated codes a crucial~and so far missing! ingredient was the
ability to perform encoded operations on the DFS-bloc
fault-tolerantly. This paper settles that matter, showing c
structively that DFSs can be made robust.

Furthermore, this paper reports on a general framew
incorporating both DFSs and QECCs, and generalizes
theory of stabilizer codes to the~non-Abelian! DFS-case.
This framework enabled us to identify the allowed ope
tions on a DFS and to show that these operations can
performed while maintaining a very strong form of fau
tolerance: the states remain within the DFS during the en
switching time of the gate. Our formalism should be read
applicable for other nonadditive codes.

There is an interesting duality between QECCs which
designed to correct single~or greater! qubit errors and DFSs
In QECC the errors are all single body interactions. T
QECC condition therefore implies that any one- or two-bo
Hamiltonian must take code words outside of the code sp
because these interactions themselves look like err
QECCs must leave their code space in order to perfo
quantum computation on the encoded operations. This me
7-25
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that QECCs must have gates which act much faster than
decoherence mechanism so that a perturbative treatmen
be carried out. QECC can correct small errors but the p
paid for this is that gates must be executed quickly~not to
mention that fault-tolerant gates must also be used!. DFSs on
the other hand do not have the requirement of correc
single qubit errors and we have found that a single two-b
interaction ~exchange! is sufficient to generate universa
quantum computation fault-tolerantly. DFSs have larger
rors but this allows for an economy of Hamiltonians.

As corollaries to our results on weak and strong collect
decoherence two additional properties of the correspond
DFS encodings appear:

~1! One can work on all DFSs in parallel: Since we a
able to implement SU(dn) on each DFSn ~n5number of par-
ticles! independently, we can in principle work on all DFS
in parallel. This means that we can encode quantum in
mation into each of the DFSs and perform calculations~pos-
sibly different! on all of them at once.

~2! For the strong collective decoherence case the
change gate is asymptotically universal: It is well-known th
the encoding efficiency of the singlet space of the stro
collective decoherence-DFS for largen approaches unity
@21#. More precisely, letk be the number of encoded qubi
in the singlet (J50) sector of a Hilbert space ofn qubits,
then

lim
n→`

k

n
512

3

2

log2 n

n
. ~88!

We have established that the exchange gate alone~with an
irrational phase! implements universal computation on ea
DFS, and on the singlet space in particular. Thus we fi
that, for largen, in order to achieve universal computatio
with nearly perfect efficiency, all we need to be able to p
form is the exchange interaction. This result is very prom
ing from an experimental point of view, since the exchan
interaction is prevalent whenever there is a Heisenberg c
pling between systems@28,40#. We emphasize that regard
less of the decoherence mechanism, this implies that uni
sal quantum computation can be achieved ‘‘asymptotical
using a single gate@62#. We conjecture that there are man
more such two-body interactions which similarly provid
such ‘‘asymptotic universality’’ on their own.
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APPENDIX A: THE PARTIAL COLLECTIVE ANGULAR
MOMENTUM OPERATORS ARE A SET

OF COMMUTING OBSERVABLES

We prove here that the partial collective operatorsSa
k

[Sa
(1,2, . . . ,k)5( i 51

k sa
i form a commuting set and hence,
04230
he
an
e

g
y

r-

e
g

r-

x-
t
g

d

-
-
e
u-

r-
’’

.
-

-

good operator basis. Note first that

~Sk!25 (
i , j 51

k

(
a5x,y,z

sa
i sa

j . ~A1!

Thus

@~Sk!2,~Sl !2#5F (
i , j 51

k

(
a5x,y,z

sa
i sa

j , (
m,n51

l

(
b5x,y,z

sb
msb

n G .

~A2!

Terms witha5b obviously commute. Further, terms wit
(m5 i ,n5 j ), (m5 j ,n5 i ), or (iÞm,n, j Þm,n), commute,
so we need only consider (i 5m, j Þn), (i 5n, j Þm) or (i
Þm, j 5n), (iÞn, j 5m). In addition, assuming without los
of generality thatl>k, terms withm,n.k also commute.
Thus we are left with

@~Sk!2,~Sl !2#52 (
i , j 51

k

(
n(Þ j )51

k

(
bÞa5x,y,z

@sa
i sa

j ,sb
i sb

n #

12 (
i , j 51

k

(
m(Þ i )51

k

(
bÞa5x,y,z

@sa
i sa

j ,sb
msb

j #.

~A3!

Using the fact that@sa
i sa

j ,sb
i sb

n #5 i (g«abgsg
i sa

j sb
n and

@sa
i sa

j ,sb
msb

j #5 i (g«abgsa
i sb

msg
j :

@~Sk!2,~Sl !2#52 (
i , j 51

k

(
n(Þ j )51

k

(
a,b,g5$x,y,z%

«abgsg
i sa

j sb
n

12 (
i , j 51

k

(
m(Þ i )51

k

(
a,b,g5$x,y,z%

«abgsa
i sb

msg
j ,

and both sums vanish due to the antisymmetric property
«abg .

APPENDIX B: MAXIMAL- mJ STATES OF THE STRONG
COLLECTIVE DECOHERENCE DFS

We show how to recursively express then-particle total
spin-J states in terms of (n21)-particle states. Let us focu
on DFSn(J) and in particular on the maximal-mJ state in it:

uc&5uJ1 , . . . ,Jn21 ,J;mJ5J&. ~B1!

In general (JÞ0,n/2) there are two kinds of states: botto
(uc&B) and top (uc&T) ones. The angular momentum additio
rule that must be satisfied for adding a single spin-1

2 particle
is that

mJn21
6

1

2
5mJ .

The B-state comes from adding a particle to the maximalmJ
state in DFSn21(J21/2), which is
7-26
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uB&5UJ1 , . . . ,Jn22 ,J2
1

2
;mJn21

5J2
1

2L . ~B2!

There is only one way to go fromuB& to uc&B , namely to add
1/2 to mJn21

5J2 1
2 in order to obtainmJ5J. Thus

uc&B5uB&U12 ,
1

2L , ~B3!

whereu 1
2 , 1

2 & is the single-particle spin-up state. The situati
is different for the T-state, which is constructed by addin
particle to

uT6&5UJ1 , . . . ,Jn22 ,J1
1

2
;mJn21

5J6
1

2L . ~B4!

These two possibilities give:

uc&T5auT1&U12 ,2
1

2L 1buT2&U12 ,
1

2L . ~B5!

To find the coefficientsa andb, we use the collective rais
ing operator s15sx1 isy , where we recall thatsa

(k)

5 1
2 ( i 51

k sa
i . Since uc& is a maximal-mJ state it is annihi-

lated bys1[sa
(n) . Similarly, uT1& is annihilated bys1

(n21) .
Therefore sinces15s1

(n21)1 1
2 s1

n :

s1uT1&U12 ,2
1

2L 5uT1&U12 ,
1

2L
s1uT2&U12 ,

1

2L 5A2J11uT1&U12 ,
1

2L ,

where in the second line we used the elementary raising
erator formula J1u j ,m&5@ j ( j 11)2m(m11)#1/2u j ,m11&
with j 5J1 1

2 and m5J2 1
2 . Application of s1 to Eq. ~B5!

thus yields:

a1A2J11b50. ~B6!

Hence up to an arbitrary phase choice, we find that

a52A2J11

2J12
; b5

1

A2J12
. ~B7!

The special cases ofJ50,n/2 differ only in that the corre-
sponding DFSs support just T- and B-states, respectiv
The calculation of the coefficients, therefore, remains
same.

In a similar manner one can carry the calculation o
particle deeper. Doing this we find for the maximal-mJ states
~provided they exist!:
04230
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uTT&[UJ1 , . . . ,Jn23 ,J11,J1
1

2
,J;mJ5JL

5A2J11

2J13
uJ1 , . . . ,Jn23 ,J11;mJn22

5J11&

3U12 ,2
1

2L U12 ,2
1

2L 2A 2J11

~2J12!~2J13!

3uJ1 , . . . ,Jn23 ,J11;mJn22
5J&

3S U12 ,
1

2L U12 ,2
1

2L 1U12 ,2
1

2L U12 ,
1

2L D
1A 2

~2J12!~2J13!

3uJ1 , . . . ,Jn23 ,J11;mJn22
5J21&U12 ,

1

2L U12 ,
1

2L ;

uBT&[UJ1 , . . . ,Jn23 ,J,J1
1

2
,J;mJ5JL

52A2J11

2J12
uJ1 , . . . ,Jn23 ,J;mJn22

5J&

3U12 ,
1

2L U12 ,2
1

2L 1
1

A~2J12!~2J11!

3uJ1 , . . . ,Jn23 ,J;mJn22
5J&U12 ,2

1

2L U12 ,
1

2L
1A 2J

~2J11!~2J12!

3uJ1 , . . . ,Jn23 ,J;mJn22
5J21&U12 ,

1

2L U12 ,
1

2L ;

uTB&[UJ1 , . . . ,Jn23 ,J,J2
1

2
,J;mJ5JL

52A 2J

2J11
uJ1 , . . . ,Jn23 ,J;mJn22

5J&U12 ,2
1

2L
3U12 ,

1

2L 1
1

A2J11

3uJ1 , . . . ,Jn23 ,J;mJn22
5J21&U12 ,

1

2L U12 ,
1

2L ,

uBB&[UJ1 , . . . ,Jn23 ,J21,J2
1

2
,J;mJ5JL

5uJ1 , . . . ,Jn23 ,J21;mJn22
5J21&U12 ,

1

2L U12 ,
1

2L .

~B8!
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Caution must be exercised in using these expressions
the boundary of Table I, where some of the states may
exist.

APPENDIX C: PROOFS OF THE LEMMAS

Enlarging Lemma: Let H be a Hilbert space of dimensio
d and letu i &PH. Assume we are given a set of Hamiltonia
H1 that generates su(d21) on the subspace ofH that does
not containu i &, and another setH2 that generates su(2) o
the subspace ofH spanned by$u i &,u j &%, whereu j & is another
state inH. Then@H1 ,H2# ~all commutators! generates su(d)
on H under closure as a Lie algebra.

Proof: We explicitly construct the Lie-algebra su(d) with
the given Hamiltonians. LetH̃,H be thed21 dimensional
subspaceH1 acts on. Let us show that we can generate su
betweenuk&PH̃ and u i &.

Let X i j [u i &^ j u1u j &^ i uPH2 andX jk[u j &^ku1uk&^ j uPH1.
Then

Y ik[ i @X jk ,X i j #52 i u i &^ku1 i uk&^ i u ~C1!

acts assy on the statesu i &,uk&. Similarly

X ik[ i @Y i j ,X jk#5u i &^ku1uk&^ i u ~C2!

yields sx on the space spanned byu i &,uk&. These two opera-
tions generate su(2) onu i &,uk& for all uk& in the subspace o
H that does not containu i &. Now the Mixing Lemma gives
the desired result together with the observation that there
only use elements in@H1 ,H2#.
on
r
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m
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Mixing Lemma: Consider the division of ann dimensional
Hilbert spaceH into a direct sum of two subspacesH1
% H2 of dimensionsn1 and n2 , respectively. Suppose tha
u i n& is an orthonormal basis forHn . Then the Lie algebras
generated by X i 1 ,i 2

5u i 1&^ i 2u1u i 2&^ i 1u, Y i 1 ,i 2
5 i u i 1&^ i 2u

2 i u i 2&^ i 1u, andZ i 1 ,i 2
5u i 1&^ i 1u2u i 2&^ i 2u generate su(n).

Proof: We explicitly construct the elements of su(n).
Consider i @X i 1 ,i 2

,Y j 1 , j 2
#. Clearly, if i 1Þ i 2Þ j 1Þ j 2 this

equals zero and ifi 15 j 1 and i 25 j 2 then this commutator is
2Z i 1 ,i 2

. If, however,i 15 j 1 and i 2Þ j 2 this becomes

i @X i 1 ,i 2
,Y i 1 , j 2

#52u i 2&^ j 2u2u j 2&^ i 2u. ~C3!

Similarly:

i @X i 1 ,i 2
,Y j 1 ,i 2

#5u i 1&^ j 1u1u j 1&^ i 1u. ~C4!

Thus everyu i k&^ j l u1u j l&^ i ku is in the Lie algebra. Similarly,
i @X i 1 ,i 2

,X j 1 , j 2
# yields

i @X i 1 ,i 2
,X i 1 , j 2

#5 i u i 2&^ j 2u2 i u j 2&^ i 2u,

i @X i 1 ,i 2
,X j 1 ,i 2

#5 i u i 1&^ j 1u2 i u j 1&^ i 1u. ~C5!

Thus everyi u i k&^ j l u2 i u j l&^ i ku is in the Lie algebra. Taking
the commutator of these with theu i k&^ j l u1u j l&^ i ku operators
finally yields everyu i k&^ j l u2u j l&^ i ku. Since su(n) can be de-
composed into a sum of overlapping su(2)’s @65#, the Lie
algebra is the entire su(n), as claimed.
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