Stabilizer quantum codes via the CWS framework

Leonid Pryadko
University of California, Riverside

Y. Li, I. Dumer, & LPP, PRL (2010)
Y. Li, I. Dumer, M. Grassl, & LPP, PRA (2010)
A. Kovalev, I. Dumer, & LPP, PRA (accepted)
Stabilizer quantum codes via the CWS framework

Leonid Pryadko
University of California, Riverside

• Intro: Stabilizer codes, graph states, and CWS codes
• Upper bounds on generic CWS codes
• GF(4) representation of an additive CWS code & lower bound for codes from a given graph
• Cyclic CWS & related codes

Y. Li, I. Dumer, & LPP, PRL (2010)
Y. Li, I. Dumer, M. Grassl, & LPP, PRA (2010)
A. Kovalev, I. Dumer, & LPP, PRA (accepted)
Stabilizer codes

General quantum code is a subspace Q of n-qubit Hilbert space $\mathcal{H}_2^\otimes n$.

Stabilizer code Q is determined by an Abelian stabilizer group I of Pauli operators

$$Q \equiv \{ |\psi\rangle : S |\psi\rangle = |\psi\rangle, \forall S \in I \}$$

If $I = \langle G_1, \ldots, G_{n-k} \rangle$, with $(n-k)$ generators, the code encodes k logical qubits. There are k logical operators $\overline{X}_i, \overline{Z}_i, i = 1, \ldots, k$ which commute with every element in I. The code is denoted $[[n, k, d]]$, where d is the distance of the code. Errors are detected by measuring the generators G_i of the stabilizer I.

The group $\langle G_1, \ldots, G_{n-k}, Z_1, \ldots, Z_k \rangle$ stabilizes a unique stabilizer state $|s\rangle \equiv |\bar{0} \ldots \bar{0}\rangle$; the basis of the code is

$$|\alpha_1, \ldots \alpha_k\rangle \equiv \overline{X}_1^{\alpha_1} \ldots \overline{X}_k^{\alpha_k} |s\rangle, \alpha_j = \{0, 1\}, j = 1, \ldots, k.$$
Example: $[[5,1,3]]$ stabilizer code

$Q \equiv \{ |\psi\rangle : G_i |\psi\rangle = |\psi\rangle , i = 1, \ldots, 4 \}$ with generators $G_1 = XZZZXI, G_2 = IXZZX, G_3 = XIIXZZ, G_4 = ZXIXZ$

A basis of the code space is (up to normalization)

$$|\bar{0}\rangle = \prod_{i=1}^{4} (1 + G_i) |00000\rangle, \quad |\bar{1}\rangle = \overline{X} |\bar{0}\rangle.$$

The logical operators can be taken as

$$\overline{X} = ZZZZZZ, \quad \overline{Z} = XXXXXX.$$

Measure generators of the stabilizer to find the error, e.g., $\tilde{\psi} = X_1 (A |\bar{0}\rangle + B |\bar{1}\rangle$) gives unique syndrome

$$\langle G_1 \rangle = 1, \quad \langle G_2 \rangle = 1, \quad \langle G_3 \rangle = 1, \quad \langle G_4 \rangle = -1.$$

For this code, there are total of 15 single-qubit errors, and exactly 15 distinct syndromes (apart from $\langle G_i \rangle = 1$ for any $|\psi\rangle \in Q$).
Graph states

For a simple graph $G = (V, E)$ with adjacency matrix $R \equiv \gamma_{ij}$, the generators $S_i \equiv X_i \prod_{j=1}^{n} Z^{\gamma_{ij}}$

These define the Abelian graph stabilizer group $\mathcal{S}_G \equiv \langle S_1, \ldots, S_n \rangle$ and the graph state $|s\rangle$: $S_i |s\rangle = |s\rangle$, a $[[n, 0, d]]$ stabilizer code

Distance of a graph state is defined as the minimum weight of an element of the graph stabilizer \mathcal{S}_G.
Graph states

For a simple graph $G = (V, E)$ with adjacency matrix $R \equiv \gamma_{ij}$, the generators $S_i \equiv X_i \prod_{j=1}^{n} Z^{\gamma_{ij}}$

These define the Abelian graph stabilizer group $\mathcal{S}_G \equiv \langle S_1, \ldots, S_n \rangle$ and the graph state $|s\rangle$: $S_i |s\rangle = |s\rangle$, a [[n, 0, d]] stabilizer code

Distance of a graph state is defined as the minimum weight of an element of the graph stabilizer \mathcal{S}_G.

Example: Ring graph for $n = 3$; $S_1 = XZZZ$, $S_2 = ZXZZ$, $S_3 = ZZXX$. $|s\rangle$ is an equal superposition of all 2^3 states, taken with positive or negative signs depending on the number of pairs of ones at positions connected by the edges of the graph.

\[
|s\rangle = |000\rangle + |001\rangle + |010\rangle - |011\rangle + |100\rangle - |101\rangle - |110\rangle - |111\rangle = S_2 |s\rangle = |010\rangle - |011\rangle + |000\rangle + |001\rangle - |110\rangle - |111\rangle + |100\rangle - |101\rangle
\]
Code-Word Stabilized codes

Generally non-additive, but include all stabilizer codes as a subclass.

Standard form: $Q = (G, C)$. Graph $G \rightarrow$ graph state $|s\rangle$
Classical binary code $(n, K, d) = C = \{c_i\}_{i=1}^K$, with n-bit c_i.
Quantum basis vectors $|i\rangle \equiv W_i |s\rangle$
codeword operators $W_i \equiv Z^{c_i,1} \ldots Z^{c_i,n}$.
Error $E = Z^u X^v$ maps to binary vector $[\text{Cl}_G(E)]_j \equiv u_j + \gamma_{ij} v_i$

Example: Non-additive CWS code $((5, 6, 2))$. The $n = 5$ ring graph generated by $S_2 = Z X Z I I$ and cyclic permutations.
Classical codewords
$c_0 = 00000$, $c_1 = 01101$, $c_2 = 10110$,
$c_3 = 01011$, $c_4 = 10101$, $c_5 = 11010$.
Code-Word Stabilized codes

Generally non-additive, but include all stabilizer codes as a subclass.

Standard form: \(Q = (G, C) \). Graph \(G \rightarrow \) graph state \(|s\rangle\)

Classical binary code \((n, K, d) = C = \{c_i\}_{i=1}^K\), with \(n\)-bit \(c_i\).

Quantum basis vectors \(|i\rangle \equiv W_i |s\rangle\)

Codeword operators \(W_i \equiv Z^{c_{i,1}} \ldots Z^{c_{i,n}}\).

Error \(E = Z^u X^v \) maps to binary vector \([Cl_G(E)]_j \equiv u_j + \gamma_{ij} v_i\)

Example: Non-additive CWS code \(((5, 6, 2))\). The \(n = 5\) ring graph generated by \(S_2 = ZXZIIZ\) and cyclic permutations.

Classical codewords
\(c_0 = 00000, c_1 = 01101, c_2 = 10110, c_3 = 01011, c_4 = 10101, c_5 = 11010.\)

Unfortunately, no known efficient algorithm to decode non-additive CWS codes.
Error correction for CWS codes

Error detection condition \(\langle i \mid E \mid j \rangle = C_E \delta_{ij} \)

(a) Non-degenerate case \(C_E = 0 \):
\[
0 = \langle i \mid E \mid j \rangle = \langle s \mid W_i^\dagger E W_j S \mid s \rangle = \pm \langle s \mid W_i^\dagger W_j (ES) \mid s \rangle.
\]
If \(E = X^vZ^u \), get rid of all \(X \) operators with \(S_i: \, v_i \neq 0 \)

Error mapping to binary vector \([\text{Cl}_G(E)]_j \equiv u_j + \gamma_{ij}v_i\)

Power of \(Z \): \(c_i \oplus c_j \oplus \text{Cl}_G(E) \)
If this is non-zero, classical and quantum error detection conditions coincide

(b) Degenerate case \(C_E \neq 0 \). Nothing to do in classical case.
Quantum: \(E \) must commute with every \(W_i \) \(\Rightarrow \langle c_i, v \rangle = 0 \)
Upper bounds for a CWS code

- Distance of a CWS code $Q = (G, C)$ does not exceed that of the binary code C, $d_Q \leq d_C$.

- Distance of a non-degenerate CWS code $Q = (G, C)$ does not exceed that of the graph state induced by G [Grassl et al., 2009], $d_{Q}^{\text{non-deg}} \leq d'_G$.

- If a bit j is involved in the code C [$\exists c \in C : c_j \neq 0$], then the distance of the CWS code $Q = (G, C)$ does not exceed the weight of S_j, $d_Q \leq \text{wgt } S_j$.
Upper bounds for a CWS code

- Distance of a CWS code $Q = (G, C)$ does not exceed that of the binary code C, $d_Q \leq d_C$.

- Distance of a non-degenerate CWS code $Q = (G, C)$ does not exceed that of the graph state induced by G [Grassl et al., 2009], $d_{Q}^{\text{non-deg}} \leq d_{G}'$.

- If a bit j is involved in the code C [$\exists c \in C : c_j \neq 0$], then the distance of the CWS code $Q = (G, C)$ does not exceed the weight of S_j, $d_Q \leq \text{wgt } S_j$.

Consequences

- For a graph G with all vertices of the same degree r, the distance of a CWS code $Q = (G, C)$ cannot exceed $r + 1$.

- The distance of a CWS code $Q = (G, C)$ where the binary code C involves all bits cannot be bigger than the minimum weight of S_i.
Examples: Simple stabilizer codes via CWS framework

- The $[[5, 1, 3]]$ code is generated by the binary code $\mathcal{C} = \langle (11111) \rangle$ and the 5-ring graph \mathcal{G}. Graph stabilizer generators $S_2 = Z_1X_2Z_3$ and cyclic shifts. Stabilizer generators $S_2S_3 = Z_1Y_2Y_3Z_4$ and cyclic shifts.
Examples: Simple stabilizer codes via CWS framework

- The $[[5, 1, 3]]$ code is generated by the binary code $C = \langle (11111) \rangle$ and the 5-ring graph G. Graph stabilizer generators $S_2 = Z_1 X_2 Z_3$ and cyclic shifts. Stabilizer generators $S_2 S_3 = Z_1 Y_2 Y_3 Z_4$ and cyclic shifts.

- The second $[[6, 1, 3]]$ code is generated by the binary code $C = \langle (011100) \rangle$ and the graph shown. Code degenerate above the graph distance $d'(G) = 2$: $S_1 S_2 = X_1 X_2$.

\[\text{Diagram of the 5-ring graph} \]
Examples: Simple stabilizer codes via CWS framework

• The $[[5, 1, 3]]$ code is generated by the binary code $\mathcal{C} = \langle (11111) \rangle$ and the 5-ring graph G. Graph stabilizer generators $S_2 = Z_1X_2Z_3$ and cyclic shifts. Stabilizer generators $S_2S_3 = Z_1Y_2Y_3Z_4$ and cyclic shifts.

• The second $[[6, 1, 3]]$ code is generated by the binary code $\mathcal{C} = \langle (011100) \rangle$ and the graph shown. Code degenerate above the graph distance $d'(G) = 2$: $S_1S_2 = X_1X_2$.

• Steane’s $[[7, 1, 3]]$ code with the stabilizer generators $X_1X_2X_3X_4$, $Z_1Z_2Z_3Z_4$ and their cyclic shifts. It is generated by the code $\mathcal{C} = \langle (1110000) \rangle$ and the graph shown. No graph with explicit circulant symmetry exists.
\(\text{GF}(4) \) representation of the stabilizer

Background: \(\text{GF}(4) \) map for the stabilizer of an additive code:

\[
U \equiv i^m Z^u X^v \rightarrow (v, u) \rightarrow u + \omega v,
\]

where \(\omega \) is the generator of \(\text{GF}(4) \): \(\overline{\omega} \equiv \omega^2 = \omega + 1, \overline{\omega} \omega = 1 \).

Operators \(U_1 \) and \(U_2 \) commute iff

\[
e_1 \ast e_2 \equiv e_1 \cdot \overline{e}_2 + \overline{e}_1 \cdot e_2 = v_1 \cdot u_2 + u_1 \cdot v_2.
\]

Generator matrix for the additive \(\text{GF}(4) \) code \(\Leftrightarrow \) CWS code

\[
G = P(\omega 1 + R)
\]

Parity check matrix for the binary code
Graph adjacency matrix
$GF(4)$ representation of the stabilizer

Background: $GF(4)$ map for the stabilizer of an additive code:

\[U \equiv i^m Z^u X^v \rightarrow (v, u) \rightarrow u + \omega v, \]

where ω is the generator of $GF(4)$: $\bar{\omega} \equiv \omega^2 = \omega + 1$, $\bar{\omega}\omega = 1$.

Operators U_1 and U_2 commute iff

\[e_1 \ast e_2 \equiv e_1 \cdot e_2 + \bar{e}_1 \cdot e_2 = v_1 \cdot u_2 + u_1 \cdot v_2. \]

Generator matrix for the additive $GF(4)$ code \Leftrightarrow CWS code

\[
G = P(\omega 1 + R)
\]

Parity check matrix for the binary code

Graph adjacency matrix

\[G \text{ is automatically self-orthogonal as long as } R = R^t \]

\[G \ast \bar{G}^t = P(\omega 1 + R) \ast (\bar{\omega} 1 + R) P^t = 0 \]
Theorem: For a given graph \mathcal{G} with the graph-state distance $d'(\mathcal{G})$, there is a binary code \mathcal{C} such that the CWS code $Q = (\mathcal{G}, \mathcal{C})$ is pure and satisfies the quantum Gilbert-Varshamov bound,

$$\sum_{s=1}^{d-1} 3^s \binom{n}{s} \leq 2^{n-k}, \text{ for } d \leq d'(\mathcal{G}).$$
Gilbert-Varshamov bound for a given graph

Theorem: For a given graph G with the graph-state distance $d'(G)$, there is a binary code C such that the CWS code $Q = (G, C)$ is pure and satisfies the quantum Gilbert-Varshamov bound,

$$d - 1 \sum_{s=1}^{d-1} 3^s \binom{n}{s} \leq 2^{n-k}, \text{ for } d \leq d'(G).$$

- Once a suitable graph is chosen, one only has to find a binary code – much easier problem

When $n, k, d \to \infty$, relative distance $\delta = d/n$ and code rate $R = k/n$ satisfy

$$\delta \log_2 3 + H_2(\delta) \leq 1 - R,$$

$$H_2(\delta) \equiv -\delta \log_2 \delta - (1 - \delta) \log_2 (1 - \delta)$$
Fixed distance codes

Gilbert-Varshamov bound for finite distance d implies the redundancy $n - k = d \log_2(3n/2d)$.

Example: Codes on finite square lattice have distance $d \leq 5$. With edges involved in the code, $d \leq 4$. Code $[[25, 4, 4]]$, member of the family $[[L_x L_y, (L_x - 3)(L_y - 3), 4]]$. Redundancy $n - k = 3(L_x + L_y) - 9 \propto \sqrt{n}$.

Codes found numerically: $[[25, 10, 5]], [[25, 13, 4]], [[25, 17, 3]]$
Fixed distance codes

Gilbert-Varshamov bound for finite distance d implies the redundancy $n - k = d \log_2(3n/2d)$.

Example: Codes on finite square lattice have distance $d \leq 5$. With edges involved in the code, $d \leq 4$. Code $[[25, 4, 4]]$, member of the family $[[L_x L_y, (L_x - 3)(L_y - 3), 4]]$. Redundancy $n - k = 3(L_x + L_y) - 9 \propto \sqrt{n}$.

Codes found numerically: $[[25, 10, 5]], [[25, 13, 4]], [[25, 17, 3]]$

Generalization: codes on a D-dimensional hypercubic lattice with $n = L^D$, $d = 2D$, and redundancy $n - k \propto L^{D-1}$.
Cyclic CWS & related codes

Cyclic code: $(ZYYZI) \in \mathcal{I} \rightarrow (IZYYZ) \in \mathcal{I}$.

Circulant matrix $G = \begin{pmatrix}
1 & \bar{\omega} & \bar{\omega} & 1 & \cdot \\
\cdot & 1 & \bar{\omega} & \bar{\omega} & 1 \\
1 & \cdot & 1 & \bar{\omega} & \bar{\omega} \\
\bar{\omega} & 1 & \cdot & 1 & \bar{\omega} \\
\bar{\omega} & \bar{\omega} & 1 & \cdot & 1
\end{pmatrix}$

Map: circulant matrix \rightarrow polynomial $g(x) = 1 + \bar{\omega}x + \bar{\omega}x^2 + x^3$

Shift: $g(x) \rightarrow xg(x) \mod (x^n - 1)$
Cyclic CWS & related codes

Cyclic code: \((ZYYZI) \in \mathcal{S} \rightarrow (IZYYZ) \in \mathcal{S}\).

Circulant matrix \(G = \begin{pmatrix}
1 & \bar{\omega} & \bar{\omega} & 1 & . \\
. & 1 & \bar{\omega} & \bar{\omega} & 1 \\
1 & . & 1 & \bar{\omega} & \bar{\omega} \\
\bar{\omega} & 1 & . & 1 & \bar{\omega} \\
\bar{\omega} & \bar{\omega} & 1 & . & 1
\end{pmatrix}\)

Map: circulant matrix \(\rightarrow\) polynomial \(g(x) = 1 + \bar{\omega}x + \bar{\omega}x^2 + x^3\)
Shift: \(g(x) \rightarrow xg(x) \mod (x^n - 1)\)

Additive CWS code: \(G = P(\omega 1 + R), \ R^t = R\).

CWS cyclic code: \(g(x) = p(x)(\omega + r(x))\), where \(r(x)\) is symmetric, \(r(x^{n-1}) = r(x) \mod (x^n - 1)\), and \(p(x)\) is a factor of \(x^n - 1\), \(p(x)q(x) = x^n - 1\).
Example: [[5, 1, 3]] code \(p(x) = 1 + x, \ r(x) = x + x^4\).
Cyclic CWS & related codes

Cyclic code: \((ZYYZI) \in \mathcal{I} \rightarrow (IZYYZ) \in \mathcal{I}\).

Circulant matrix \(G = \begin{pmatrix} 1 & \bar{\omega} & \bar{\omega} & 1 & \cdot \\ \cdot & 1 & \bar{\omega} & \bar{\omega} & 1 \\ 1 & \cdot & 1 & \bar{\omega} & \bar{\omega} \\ \bar{\omega} & 1 & \cdot & 1 & \bar{\omega} \\ \bar{\omega} & \bar{\omega} & 1 & \cdot & 1 \end{pmatrix}\)

Map: circulant matrix \(\rightarrow\) polynomial \(g(x) = 1 + \bar{\omega}x + \bar{\omega}x^2 + x^3\)

Shift: \(g(x) \rightarrow xg(x) \mod (x^n - 1)\)

Additive CWS code: \(G = P(\omega \mathbf{1} + R), R^t = R\).

CWS cyclic code: \(g(x) = p(x)(\omega + r(x))\),
where \(r(x)\) is symmetric, \(r(x^{n-1}) = r(x) \mod (x^n - 1)\), and \(p(x)\) is a factor of \(x^n - 1\), \(p(x)q(x) = x^n - 1\).

Example: \([[[5, 1, 3]]\) code \(p(x) = 1 + x\), \(r(x) = x + x^4\).

General one-generator cyclic codes
\(p(x)p(x^{n-1})r(x^{n-1}) = p(x)p(x^{n-1})r(x) \mod x^n - 1\).
Lower GV bound for cyclic quantum codes

Consider a binary cyclic code $C[n, k, d_C]$ with the generator polynomial $q(x)$ which is irreducible. Then there exists a quantum cyclic code $Q[n, k, d]$, with $d = \min(d_C, d')$, where $d' = d_{GV}(n, k)$ is (a somewhat improved) Gilbert-Varshamov bound if $q(x)$ is non-palindromic,

$$d_{GV}(n, k) \equiv \max d : \sum_{s=1}^{d-1} \left(3^s - 3\right) \frac{\gcd(s, n)}{n} \binom{n}{s} \leq 2^{n-k} - 2,$$

while for a palindromic $q(x)$, $x^{\deg q(x)}q(1/x) = q(x)$,

$$d' \approx d_{GV}(n/2, k/2) \geq \frac{1}{2} d_{GV}(n, k).$$
Example: existence proofs

Standard Gilbert-Varshamov bound for a finite number of encoded qubits k implies a finite relative distance $d/n \geq 0.189$, $n \to \infty$

Toric codes: $[[n = 2L^2, k = 2, d = L]]$: $d/n \propto 1/\sqrt{n}$

$[[18, 2, 3]], [[50, 2, 5]], [[98, 2, 7]], \ldots$
Example: existence proofs

Standard Gilbert-Varshamov bound for a finite number of encoded qubits k implies a finite relative distance $d/n \geq 0.189, \quad n \to \infty$

Toric codes: $[[n = 2L^2, k = 2, d = L]]$: $d/n \propto 1/\sqrt{n}$
$[[18, 2, 3]], [[50, 2, 5]], [[98, 2, 7]], \ldots$

For $n \lesssim 50$, most “good” quantum cyclic codes have $dk = n$, including many codes with small-weight stabilizer generators. Obtained from k replicas of the classical repetition codes $[kd, k, d]$.
Example: existence proofs

Standard Gilbert-Varshamov bound for a finite number of encoded qubits k implies a finite relative distance $d/n \geq 0.189$, $n \to \infty$.

Toric codes: $[[n = 2L^2, k = 2, d = L]]$: $d/n \propto 1/\sqrt{n}$

$[[18, 2, 3]], [[50, 2, 5]], [[98, 2, 7]], \ldots$

For $n \lesssim 50$, most “good” quantum cyclic codes have $dk = n$, including many codes with small-weight stabilizer generators. Obtained from k replicas of the classical repetition codes $[kd, k, d]$.

Codes corresponding to binary BCH codes:

$[[23, 12, 4]], [[47, 24, d \geq 6]], [[71, 36, d \geq 7]],$

$[[95, 59, 5]], [[115, 71, 5]], [[143, 83, 11]], \ldots$
Example: cyclic toric-like codes

Take $p(x) = 1 + x$ and

$$n = t^2 + (t + 1)^2 = t + 2 + (t + 1)(2t - 1),$$

$t = 1, 2, \ldots$ ($n = 5, 13, 25, 41, \ldots$) \(\Rightarrow\) two code families \([[n, 1, d]]\) with $d = 2t + 1$:

$ZYIYZ, ZYIIYIZ, ZYIIIIYIZ, \ldots$

$ZYYZ, ZIYYIZ, ZIIIYYIZ, \ldots$

Largest distance codes with weight-4 generators.
Conclusions

- Non-additive CWS codes are difficult to correct.

- Find additive CWS codes via divide and conquer approach: \(G \rightarrow Q = (G, C) \).
 - Lower complexity compared to full search; Ok codes.
 - Use regular lattices to build finite-distance codes.

- Cyclic CWS codes \(\subset \) One-generator cyclic codes.
 - Large class of easy-to construct quantum codes
 - Include codes with small-weight stabilizer
 - Rotated surface codes & friends – see Poster.
 - \([5, 1, 3]\) code gets a torus.