Fault-tolerant quantum computation via adiabatic holonomies

Ognyan Oreshkov

QuIC, Université Libre de Bruxelles

Second International Conference on Quantum Error Correction, 2011
Outline

• Holonomic quantum computation (HQC)
• HQC in subsystems
• Two approaches to fault-tolerant HQC
 1) no extra qubits, but Hamiltonians depend on the error-correcting code
 2) extra (noisy) qubits needed, but Hamiltonians independent of the code
• FTHQC with 2-qubit Hamiltonians
• Related schemes
• Conclusion and outlook
Geometric phases and HQC

Parallel transport of a vector on a curved surface (example):
Geometric phases and HQC

Parallel transport of a vector on a curved surface (example):
Geometric phases and HQC

Parallel transport of a vector on a curved surface (example):
Geometric phases and HQC

Parallel transport of a vector on a curved surface (example):
Geometric phases and HQC

Parallel transport of a vector on a curved surface (example):
Geometric phases and HQC

Parallel transport of a vector on a curved surface (example):

\(\text{holonomy} \)

(equals the flux of the curvature field through the enclosed area)
Holonomic quantum computation

Adiabatic theorem (Kato, 1950): Consider a time-dependent Hamiltonian $H(t/T)$ changing along a curve $H(s), s \in [0, 1]$. Let $\epsilon(s)$ be an eigenvalue with constant degeneracy, whose eigenspace $\mathcal{H}_\epsilon(s)$ has a twice-differentiable projector $\Pi_\epsilon(s)$.
Holonomic quantum computation

Adiabatic theorem (Kato, 1950): Consider a time-dependent Hamiltonian $H(t/T)$ changing along a curve $H(s)$, $s \in [0, 1]$. Let $\epsilon(s)$ be an eigenvalue with constant degeneracy, whose eigenspace $\mathcal{H}_\epsilon(s)$ has a twice-differentiable projector $\Pi_\epsilon(s)$.

- In the limit $T \to \infty$, any state initially in $\mathcal{H}_\epsilon(0)$ remains in $\mathcal{H}_\epsilon(s)$ for all s.
In the limit \(T \to \infty \), any state initially in \(\mathcal{H}_\epsilon(0) \) remains in \(\mathcal{H}_\epsilon(s) \) for all \(s \).

Specifically, if \(\{|i, s\}\} \) is an arbitrary (differentiable) basis of \(\mathcal{H}_\epsilon(s) \), the evolution of any initial state is given by [up to an error \(O(T^{-1}) \)]

\[
|\psi(t)\rangle = e^{-i \int_0^t \epsilon(\tau/T) d\tau} \Gamma(t/T) |\psi(0)\rangle ,
\]

where

\[
\Gamma(s) = \lim_{\delta s \to 0} \Pi_\epsilon(s) \Pi_\epsilon(s - \delta s) \ldots \Pi_\epsilon(\delta s) \Pi_\epsilon(0) = \sum_{ij} U_{ij}(s) |i, s\rangle \langle j, 0| .
\]
Holonomic quantum computation

Adiabatic theorem (Kato, 1950): Consider a time-dependent Hamiltonian $H(t/T)$ changing along a curve $H(s)$, $s \in [0, 1]$. Let $\epsilon(s)$ be an eigenvalue with constant degeneracy, whose eigenspace $\mathcal{H}_\epsilon(s)$ has a twice-differentiable projector $\Pi_\epsilon(s)$.

- In the limit $T \to \infty$, any state initially in $\mathcal{H}_\epsilon(0)$ remains in $\mathcal{H}_\epsilon(s)$ for all s.
- Specifically, if $\{|i, s\rangle\}$ is an arbitrary (differentiable) basis of $\mathcal{H}_\epsilon(s)$, the evolution of any initial state is given by [up to an error $O(T^{-1})$]

$$|\psi(t)\rangle = e^{-i \int_0^t \epsilon(\tau/T) d\tau} \Gamma(t/T) |\psi(0)\rangle,$$

where $\Gamma(s) = \lim_{\delta s \to 0} \Pi_\epsilon(s) \Pi_\epsilon(s - \delta s) \ldots \Pi_\epsilon(\delta s) \Pi_\epsilon(0) = \sum_{ij} U_{ij}(s)|i, s\rangle \langle j, 0|$.

$$\uparrow$$

dynamical phase
Holonomic quantum computation

Adiabatic theorem (Kato, 1950): Consider a time-dependent Hamiltonian $H(t/T)$ changing along a curve $H(s), s \in [0, 1]$. Let $\epsilon(s)$ be an eigenvalue with constant degeneracy, whose eigenspace $\mathcal{H}_\epsilon(s)$ has a twice-differentiable projector $\Pi_\epsilon(s)$.

- In the limit $T \to \infty$, any state initially in $\mathcal{H}_\epsilon(0)$ remains in $\mathcal{H}_\epsilon(s)$ for all s.
- Specifically, if $\{|i, s\rangle\}$ is an arbitrary (differentiable) basis of $\mathcal{H}_\epsilon(s)$, the evolution of any initial state is given by [up to an error $O(T^{-1})$]

$$|\psi(t)\rangle = e^{-i \int_0^t \epsilon(\tau/T) d\tau} \Gamma(t/T) |\psi(0)\rangle,$$

where $\Gamma(s) = \lim_{\delta s \to 0} \Pi_\epsilon(s) \Pi_\epsilon(s - \delta s) \cdots \Pi_\epsilon(0) = \sum_{ij} U_{ij}(s) \langle i, s | j, 0 \rangle$.

$U(s) = \mathcal{P} \exp \int_0^s ds' A(s')$, where $A_{ij}(s) = \langle i, s | \frac{d}{ds} | j, s \rangle$.
Holonomic quantum computation

Adiabatic theorem (Kato, 1950): Consider a time-dependent Hamiltonian $H(t/T)$ changing along a curve $H(s)$, $s \in [0, 1]$. Let $\epsilon(s)$ be an eigenvalue with constant degeneracy, whose eigenspace $\mathcal{H}_\epsilon(s)$ has a twice-differentiable projector $\Pi_\epsilon(s)$.

- In the limit $T \to \infty$, any state initially in $\mathcal{H}_\epsilon(0)$ remains in $\mathcal{H}_\epsilon(s)$ for all s.
- Specifically, if $\{|i, s\rangle\}$ is an arbitrary (differentiable) basis of $\mathcal{H}_\epsilon(s)$, the evolution of any initial state is given by [up to an error $O(T^{-1})$]

$$
|\psi(t)\rangle = e^{-i \int_0^t \epsilon(\tau/T) d\tau} \Gamma(t/T) |\psi(0)\rangle ,
$$

where $\Gamma(s) = \lim_{\delta s \to 0} \Pi_\epsilon(s) \Pi_\epsilon(s - \delta s) \cdots \Pi_\epsilon(\delta s) \Pi_\epsilon(0) = \sum_{ij} U_{ij}(s) |i, s\rangle \langle j, 0| .$

$$
\mathbf{U}(s) = \mathcal{P} \exp \int_0^s ds' \mathbf{A}(s') , \text{ where } \mathbf{A}_{ij}(s) = \langle i, s \mid \frac{d}{ds} \mid j, s\rangle . \quad \text{(Wilczek-Zee, 1984)}
$$
Holonomic quantum computation

The unitary $U(s)$ depends on the choice of basis $\{|i, s\rangle\}$ (gauge freedom).
Holonomic quantum computation

The unitary \(U(s) \) depends on the choice of basis \(\{|i, s\}\) (gauge freedom).

If the subspace goes around a loop \([\mathcal{H}_\epsilon(1) = \mathcal{H}_\epsilon(0)] \),

\[
U_\gamma = \mathcal{P} \exp \int_\gamma ds A(s)
\]

is a gauge-invariant quantity (holonomy of the path \(\gamma \) in the Grassmannian).
Holonomic quantum computation

The unitary $U(s)$ depends on the choice of basis $\{|i, s\rangle\}$ (gauge freedom).

If the subspace goes around a loop $[H_\epsilon(1) = H_\epsilon(0)]$, then

$$U_\gamma = \mathcal{P} \exp \int_\gamma ds A(s)$$

is a gauge-invariant quantity (holonomy of the path γ in the Grassmannian).

The paths we can draw depend on the control parameters of the Hamiltonian.
Holonomic quantum computation

The unitary $U_{(s)}$ depends on the choice of basis $\{|i, s\rangle\}$ (gauge freedom).

If the subspace goes around a loop $[\mathcal{H}_\epsilon(1) = \mathcal{H}_\epsilon(0)]$,

$$U_\gamma = P \exp \oint_\gamma ds A(s)$$

is a gauge-invariant quantity (holonomy of the path γ in the Grassmannian).

The paths we can draw depend on the control parameters of the Hamiltonian.

Under generic conditions \Rightarrow the holonomies we can generate in the subspace $\mathcal{H}_\epsilon(0)$ suffice for universal quantum computation. (Zanardi and Rasetti, 1999)
Holonomic quantum computation

The unitary $U(s)$ depends on the choice of basis $\{|i, s\rangle\}$ (gauge freedom).

If the subspace goes around a loop $[\mathcal{H}_\epsilon(1) = \mathcal{H}_\epsilon(0)]$,

$$U_\gamma = \mathcal{P} \exp \int_\gamma ds A(s)$$

is a gauge-invariant quantity (holonomy of the path γ in the Grassmannian).

The paths we can draw depend on the control parameters of the Hamiltonian.

Under generic conditions \rightarrow the holonomies we can generate in the subspace $\mathcal{H}_\epsilon(0)$ suffice for universal quantum computation. (Zanardi and Rasetti, 1999)

 Appeal: robustness due to adiabaticity and geometric nature of gates
Holonomic quantum computation

However,

- Any system interacts with its environment.

 - HQC in DFSs (Wu, Zanardi, Lidar, 2005), but no symmetry is exact.

- Robustness does not mean flawlessness (control errors are inevitable).

- Scalability of any computational method requires fault tolerance.

 Need for active error correction!

Prospects: combine the inherent resilience of all-geometric control with the software protection of QEC
HQC in subsystems

The most general form of faithful encoding is in subsystems. (Knill, 2006)
HQC in subsystems

The most general form of faithful encoding is in **subsystems**. (Knill, 2006)

A subsystem is a tensor factor of a subspace, such as \mathcal{H}_i^A (or \mathcal{H}_i^B) in

$$\mathcal{H} = \bigoplus_i \mathcal{H}_i^A \otimes \mathcal{H}_i^B \oplus \mathcal{K}.$$
HQC in subsystems

The most general form of faithful encoding is in **subsystems**. (Knill, 2006)

A subsystem is a tensor factor of a subspace, such as \mathcal{H}_i^A (or \mathcal{H}_i^B) in

$$\mathcal{H} = \bigoplus_i \mathcal{H}_i^A \otimes \mathcal{H}_i^B \oplus \mathcal{K}.$$

The structure of preserved information!

Blume-Kohout, Ng, Poulin, Viola, PRL 100, 030501 (2008).
See also Beny, Kempf, Kribs, PRL 98, 100502 (2007).
HQC in subsystems

The most general form of faithful encoding is in subsystems. (Knill, 2006)

A subsystem is a tensor factor of a subspace, such as \mathcal{H}_i^A (or \mathcal{H}_i^B) in

$$\mathcal{H} = \bigoplus_i \mathcal{H}_i^A \otimes \mathcal{H}_i^B \oplus \mathcal{K}.$$

The structure of preserved information!

Blume-Kohout, Ng, Poulin, Viola, PRL 100, 030501 (2008).
See also Beny, Kempf, Kribs, PRL 98, 100502 (2007).

classical information

quantum information
HQC in subsystems

The most general form of faithful encoding is in **subsystems**. (Knill, 2006)

A subsystem is a tensor factor of a subspace, such as \mathcal{H}_i^A (or \mathcal{H}_i^B) in

$$\mathcal{H} = \bigoplus_i \mathcal{H}_i^A \otimes \mathcal{H}_i^B \oplus \mathcal{K}.$$

The structure of preserved information!

Blume-Kohout, Ng, Poulin, Viola, PRL 100, 030501 (2008).
See also Beny, Kempf, Kribs, PRL 98, 100502 (2007).

Example (QEC code): $\mathcal{H} = \mathcal{H}^A \otimes \mathcal{H}^B$,
Code space: $\mathcal{H}^A \otimes \text{Span}\{|0\rangle^B\}$

classical information quantum information
HQC in subsystems

The most general form of faithful encoding is in **subsystems**. (Knill, 2006)

A subsystem is a tensor factor of a subspace, such as \mathcal{H}_i^A (or \mathcal{H}_i^B) in

$$\mathcal{H} = \bigoplus_i \mathcal{H}_i^A \otimes \mathcal{H}_i^B \oplus \mathcal{K}.$$

The structure of preserved information!

Blume-Kohout, Ng, Poulin, Viola, PRL 100, 030501 (2008).
See also Beny, Kempf, Kribs, PRL 98, 100502 (2007).

Example (QEC code): $\mathcal{H} = \mathcal{H}^A \otimes \mathcal{H}^B$,
Code space: $\mathcal{H}^A \otimes \text{Span}\{|0\rangle^B\}$

$\rho^A \otimes |0\rangle\langle 0|^B$
\[\text{correctable error}\]
$\rho^A \otimes \sigma^B$
HQC in subsystems

The most general form of faithful encoding is in **subsystems**. (Knill, 2006)

A subsystem is a tensor factor of a subspace, such as \mathcal{H}_i^A (or \mathcal{H}_i^B) in

$$\mathcal{H} = \bigoplus_i \mathcal{H}_i^A \otimes \mathcal{H}_i^B \oplus \mathcal{K}.$$

The structure of preserved information!

Blume-Kohout, Ng, Poulin, Viola, PRL 100, 030501 (2008).
See also Beny, Kempf, Kribs, PRL 98, 100502 (2007).

Example (QEC code): $\mathcal{H} = \mathcal{H}^A \otimes \mathcal{H}^B$,
Code space: $\mathcal{H}^A \otimes \text{Span}\{|0\rangle^B\}$

$$\rho^A \otimes |0\rangle\langle 0|^B \quad \text{correctable error} \quad \rho^A \otimes \sigma^B \quad \text{correction} \quad \rho^A \otimes |0\rangle\langle 0|^B$$

logical information
error syndromes

classical information
quantum information
Theorem: Consider a decomposition of the Hilbert space \(\mathcal{H} = \bigoplus_i \mathcal{H}_i^A \otimes \mathcal{H}_i^B \).

Choose a starting Hamiltonian

\[
H(0) = \sum_i I_i^A \otimes H_i^B ,
\]

where \(H_i^B \) and \(H_j^B \) have different eigenvalues for \(i \neq j \). (In the case of \(\mathcal{H} = \mathcal{H}^A \otimes \mathcal{H}^B \) require \(H^B \) to have at least two different eigenvalues.)

By varying this Hamiltonian adiabatically along suitable loops, we can generate

\[
U = \sum_i W_i^A \otimes V_i^B ,
\]

where \(\{ W_i^A \} \) is any desired set of purely geometric (holonomic) operations.

Oreshkov, PRL 103, 090502 (2009).
HQC in subsystems

Consequence: HQC without initialization

When \(\mathcal{H} = \mathcal{H}^A \otimes \mathcal{H}^B \), we can implement an arbitrary purely geometric transformation on \(\mathcal{H}^A \) without having to initialize the system in any subspace.

→ Given any system, we can apply to it an arbitrary geometric transformation by appending to it a *noisy* qubit (which absorbs all unwanted dynamical effects).

May be useful where initialization is difficult to perform.
Fault-tolerant quantum computation

For a (stabilizer) QEC code, \(\mathcal{H} = \mathcal{H}^A \otimes \mathcal{H}^B \).

Logical observables are generally highly nonlocal!

→ to perform computation in \(\mathcal{H}^A \) (and error correction in \(\mathcal{H}^B \)) using local interactions, the logical states will have to go outside of \(\mathcal{H}^A \) during the implementation, i.e., the logical subsystem has to be moved around:

\[
\mathcal{H} = \mathcal{H}^A(t) \otimes \mathcal{H}^B(t) = U(t)\mathcal{H}^A \otimes \mathcal{H}^B.
\]

Can it be done so that the logical information is not exposed to further danger?
Fault-tolerant computation

Shor, DiVincenzo, Knill, Laflamme, Zurek, Aharonov, Ben-Or, Kitaev, Gottesman…. (1996 - 1997)

Definition (fault tolerance): a QEC circuit is fault-tolerant if an error occurring *during* its implementation renders the result correctable.

Threshold theorem: If the probability for an error per elementary information carrier (e.g., qubit) per gate is below some value p, an arbitrarily long computation can be implemented reliably with a polylogarithmic computational overhead.
Fault-tolerant computation

Consider a stabilizer QEC code for the correction of single-qubit errors.

Building blocks of a dynamical fault-tolerant scheme:

- **Transversal unitary operations:**
 - single-qubit unitaries
 - transversal C-NOT

- **Preparation and use of a ‘cat’ state** \((|0...0\rangle + |1...1\rangle)/\sqrt{2}\):
 - preparation
 - verification (measurement of the parity of the state)
 - transversal C-NOT gates from logical states to the cat state

- **Single-qubit measurements** in the computational basis.
Fault-tolerant computation

Consider a stabilizer QEC code for the correction of single-qubit errors.

Building blocks of a dynamical fault-tolerant scheme:

- Transversal unitary operations:
 - single-qubit unitaries
 - transversal C-NOT

- Preparation and use of a ‘cat’ state $(|0\ldots0\rangle + |1\ldots1\rangle)/\sqrt{2}$:
 - preparation
 - verification (measurement of the parity of the state)
 - transversal C-NOT gates from logical states to the cat state

- Single-qubit measurements in the computational basis.

These procedures prescribe how to move the logical subsystem $\mathcal{H}^A(t)$!
Fault-tolerant HQC

Approach 1: (no additional qubits)

Consider a $[[n,1,r,3]]$ stabilizer code, $\mathcal{G} = \langle i, S_1, \ldots, S_s, X^{g_1}, Z^{g_1}, \ldots, X^{g_r}, Z^{g_r} \rangle$.

$$\mathcal{H} = \mathcal{H}^A \otimes \mathcal{H}^B$$

logical qubits syndrome, gauge, ancilla qubits

The starting Hamiltonian must have the form $H(0) = I^A \otimes H^B$.

$\Rightarrow H(0)$ a linear combination of elements of \mathcal{G}.

During the evolution, $\mathcal{H} = \mathcal{H}^A(t) \otimes \mathcal{H}^B(t) = U(t)\mathcal{H}^A \otimes \mathcal{H}^B \Rightarrow$

$H(t) = I^{A(t)} \otimes H^{B(t)}$ [a linear combination of elements of $\mathcal{G}(t)$].

Operators in \mathcal{G} couple qubits in the same block \Rightarrow **transversality impossible!**

Oreshkov, Brun, Lidar, PRL 102, 070502 (2009) ; PRA 80, 022325 (2009)
Fault-tolerant HQC
Approach 1: (no additional qubits)

Transversal unitaries are not the only ones that prevent propagation of errors:

A transversal unitary followed by a gauge transformation is also fault-tolerant!

The main idea:

1) Adiabatically drag the logical subsystem along a sequence of paths segments, such that during each segment the unitary that we generate in the full Hilbert space is transversal up to a gauge transformation (see next slide).

2) Follow a sequence of transversal operations just like in a dynamical FT scheme. The result is the desired operation followed by a gauge transformation.

3) When we complete each operation, the logical system has been taken around a loop whose associated holonomy is the desired logical gate.

1) & 2) \(\rightarrow\) fault-tolerance; 3) \(\rightarrow\) the computation is purely geometric

Oreshkov, Brun, Lidar, PRL 102, 070502 (2009); PRA 80, 022325 (2009)
Fault-tolerant HQC
Approach 1: (no additional qubits)

How we do it…

Proposition: Take a starting Hamiltonian \(H(0) = Z^1 \otimes \tilde{G} \), where \(\tilde{G} \) is a Pauli operator on the rest of the qubits. Change the Hamiltonian adiabatically as

\[
H(t) = H^1(t) \otimes \tilde{G} , \quad \text{Tr} H^1(t) = 0.
\]

\[\Rightarrow\] The resultant unitary is \(U(t) \approx U^1(t) \otimes \tilde{I} \) (up to a gauge transformation).

Oreshkov, Brun, Lidar, PRL 102, 070502 (2009) ; PRA 80, 022325 (2009)
Fault-tolerant HQC
Approach 1: (no additional qubits)

How we do it…

Proposition: Take a starting Hamiltonian $H(0) = Z^1 \otimes \tilde{G}$, where \tilde{G} is a Pauli operator on the rest of the qubits. Change the Hamiltonian adiabatically as

$$H(t) = H^1(t) \otimes \tilde{G}, \quad \text{Tr} H^1(t) = 0.$$

⇒ The resultant unitary is $U(t) \approx U^1(t) \otimes \tilde{I}$ (up to a gauge transformation).

Example

Single-qubit X gate: $Z \otimes \tilde{G} \rightarrow Y \otimes \tilde{G} \rightarrow -Z \otimes \tilde{G}$

… In a similar way we can generate all necessary elementary operations.

Oreshkov, Brun, Lidar, PRL 102, 070502 (2009); PRA 80, 022325 (2009)
Fault-tolerant HQC
Approach 1: (no additional qubits)

Properties of the scheme:

- **The threshold** (error per qubit per gate) **is the same** as for a dynamical scheme.

Oreshkov, Brun, Lidar, PRL 102, 070502 (2009); PRA 80, 022325 (2009)
Fault-tolerant HQC
Approach 1: (no additional qubits)

Properties of the scheme:

- **The threshold** (error per qubit per gate) **is the same** as for a dynamical scheme.

But the adiabatic approximation requires slow evolution: for error 10^{-4}, holonomic gates may need to be 10 – 100 times slower than dynamical ones.
→ environmental noise has to be weaker!

Oreshkov, Brun, Lidar, PRL 102, 070502 (2009); PRA 80, 022325 (2009)
Fault-tolerant HQC
Approach 1: (no additional qubits)

Properties of the scheme:

• **The threshold** (error per qubit per gate) **is the same** as for a dynamical scheme.

 But the adiabatic approximation requires slow evolution: for error 10^{-4}, holonomic gates may need to be 10 – 100 times slower than dynamical ones. → **environmental noise has to be weaker!**

 HQC would be advantageous if it leads to an increase in control precision that outweighs the increase of environment errors due to the slowdown.

Oreshkov, Brun, Lidar, PRL 102, 070502 (2009) ; PRA 80, 022325 (2009)
Fault-tolerant HQC
Approach 1: (no additional qubits)

Properties of the scheme:

• **The threshold** (error per qubit per gate) is the same as for a dynamical scheme.

 But the adiabatic approximation requires slow evolution: for error 10^{-4}, holonomic gates may need to be 10 – 100 times slower than dynamical ones.
 → **environmental noise has to be weaker!**

HQC would be advantageous if it leads to an increase in control precision that outweighs the increase of environment errors due to the slowdown.

• Universal FTHQC with this method **requires at least 3-local Hamiltonians**. This is achievable with suitable codes (e.g., Bacon-Shor code).

Oreshkov, Brun, Lidar, PRL 102, 070502 (2009) ; PRA 80, 022325 (2009)
Fault-tolerant HQC
Approach 1: (no additional qubits)

Properties of the scheme:

• **The threshold** (error per qubit per gate) **is the same** as for a dynamical scheme. But the adiabatic approximation requires slow evolution: for error 10^{-4}, holonomic gates may need to be 10 – 100 times slower than dynamical ones.

 → **environmental noise has to be weaker!**

HQC would be advantageous if it leads to an increase in control precision that outweighs the increase of environment errors due to the slowdown.

• Universal FTHQC with this method **requires at least 3-local Hamiltonians**. This is achievable with suitable codes (e.g., Bacon-Shor code).

Can we reduce to 2-local Hamiltonians with perturbative techniques?

Oreshkov, Brun, Lidar, PRL 102, 070502 (2009); PRA 80, 022325 (2009)
Fault-tolerant HQC
Approach 2: (extra gauge qubits)

An alternative (and conceptually simpler) scheme:

HQC is performed on the entire system’s Hilbert space (by coupling each qubit or pair of qubits to an ‘*external*’ gauge qubit).

Oreshkov, PRL 103, 090502 (2009)
Fault-tolerant HQC
Approach 2: (extra gauge qubits)

An alternative (and conceptually simpler) scheme:

HQC is performed on the entire system’s Hilbert space (by coupling each qubit or pair of qubits to an ‘external’ gauge qubit).

Key features:

- Qubits in the same block do not interact by construction.
- Extra qubits → lower threshold (~1.5 times). [but no need to initialize them]
- The Hamiltonians are independent of the code.

Oreshkov, PRL 103, 090502 (2009)
Fault-tolerant HQC
Approach 2: (extra gauge qubits)

An alternative (and conceptually simpler) scheme:

HQC is performed on the entire system’s Hilbert space (by coupling each qubit or pair of qubits to an ‘external’ gauge qubit).

Key features:

- Qubits in the same block do not interact by construction.
- Extra qubits \rightarrow lower threshold (~ 1.5 times). [but no need to initialize them]
- The Hamiltonians are independent of the code. [3-local Hamiltonian required]
Fault-tolerant HQC with 2-qubit Hamiltonians

Perturbative gadgets:

Example: \[H(t) = f(t) I^1 \otimes Y^2 \otimes Z^3 + g(t) Z^1 \otimes Z^2 \otimes Z^3 \]
Fault-tolerant HQC with 2-qubit Hamiltonians

Perturbative gadgets:

Example: \[H(t) = f(t) I^1 \otimes Y^2 \otimes Z^3 + g(t) Z^1 \otimes Z^2 \otimes Z^3 \]
Fault-tolerant HQC with 2-qubit Hamiltonians

Perturbative gadgets:

Example: \[H(t) = f(t) I^1 \otimes Y^2 \otimes Z^3 + g(t) Z^1 \otimes Z^2 \otimes Z^3 \]

\[(|000\rangle + |111\rangle)/\sqrt{2} \]
Fault-tolerant HQC with 2-qubit Hamiltonians

Perturbative gadgets:

Example: \[H(t) = f(t)I^1 \otimes Y^2 \otimes Z^3 + g(t)Z^1 \otimes Z^2 \otimes Z^3 \]

\[H_{\text{gad}}(t) = \sum_{s=1}^{2} H_{s}^{\text{anc}} + \lambda \sum_{s=1}^{2} V_{s}(t) \]

(|000⟩ + |111⟩)/√2
Fault-tolerant HQC with 2-qubit Hamiltonians

Perturbative gadgets:

Example: \[H(t) = f(t) I^1 \otimes Y^2 \otimes Z^3 + g(t) Z^1 \otimes Z^2 \otimes Z^3 \]

\[H_{\text{gad}}(t) = \sum_{s=1}^{2} H_{s}^{\text{anc}} + \lambda \sum_{s=1}^{2} V_s(t) \]

\[H_{s}^{\text{anc}} = \sum_{1 \leq i < j \leq 3} \frac{1}{2}(I - Z_{s,i}Z_{s,j}) \]
Fault-tolerant HQC with 2-qubit Hamiltonians

Perturbative gadgets:

Example: \[H(t) = f(t)I^1 \otimes Y^2 \otimes Z^3 + g(t)Z^1 \otimes Z^2 \otimes Z^3 \]

\[H_{\text{gad}}(t) = \sum_{s=1}^{2} H_{s}^{\text{anc}} + \lambda \sum_{s=1}^{2} V_{s}(t) \]

\[H_{s}^{\text{anc}} = \sum_{1 \leq i < j \leq 3} \frac{1}{2}(I - Z_{s,i}Z_{s,j}) \]

\[V_{1}(t) = \sqrt[3]{f(t)}I^1 \otimes X_{1,1} + \sqrt[3]{f(t)}Y^2 \otimes X_{1,2} + \sqrt[3]{f(t)}Z^3 \otimes X_{1,3} \]

\[V_{2}(t) = \sqrt[3]{g(t)}Z^1 \otimes X_{2,1} + \sqrt[3]{g(t)}Z^2 \otimes X_{2,2} + \sqrt[3]{g(t)}Z^3 \otimes X_{2,3} \]
Fault-tolerant HQC with 2-qubit Hamiltonians

Perturbative gadgets:

Example: \[H(t) = f(t)I^1 \otimes Y^2 \otimes Z^3 + g(t)Z^1 \otimes Z^2 \otimes Z^3 \]

\[H_{\text{gad}}(t) = \sum_{s=1}^{2} H_{s}^{\text{anc}} + \lambda \sum_{s=1}^{2} V_{s}(t) \]

Effective Hamiltonian: \[H_{\text{eff}} = \frac{3\lambda^3}{2} H(t) \otimes P_{\text{cat}} + O(\lambda^4) \]
Fault-tolerant HQC with 2-qubit Hamiltonians

Drawbacks of the gadgets:

• An error on any of the 9 qubits can result in an error on the 2 system qubits \Rightarrow the threshold is $9/2$ times smaller.

• If for adiabatic precision $1 - \delta$ with the Hamiltonian $H(t)$ we need time T, with the effective Hamiltonian $\frac{3\lambda^3}{2} H(t)$ we need time $T' = \frac{2}{3\lambda^3} T$.

But $O(\lambda^4 T') = O(\lambda T) = O(\delta) \Rightarrow T' = O\left(\frac{T^4}{\delta^3}\right)$.

\Rightarrow We need $O\left(\frac{T^3}{\delta^3}\right)$ times longer evolution! (very large slow-down)
Related schemes

• Adiabatic gate teleportation:
 Bacon and Flammia,
 PRL 103, 120504 (2009)
 - Each gate is implemented by dragging the logical system only along a single line segment! (could be viewed as open-path HQC)
 - Compatible with fault-tolerant techniques and perturbative gadgets

• Cluster state adiabatic computation:
 Bacon and Flammia,
 PRA 82, 030303(R) (2010)
 - One-way computing without measurements

• HQC in ground states of spin chains protected by topological order:
 Renes, Miyake, Brennen,
 Bartlett, arXiv: 1103.5076
 - Based on 2-local Hamiltonians without gadgets
Related schemes

- **HQC by dissipation** *(Adiabatic Markovian Dynamics)*

\[
\frac{d\rho}{dt} = -i[H(t), \rho] + \sum_i \left(L_i(t)\rho L_i(t)^\dagger - \frac{1}{2} L_i^\dagger(t) L_i(t)\rho - \frac{1}{2} \rho L_i^\dagger(t) L_i(t) \right)
\]

Oreshkov and Calsamiglia, PRL 105, 050503 (2010)

- A noiseless subsystem is dragged by a slowly varying Lindblad generator.

(Compatible with fault-tolerance Approach 2)

A new type of geometric phase: generalizes the Wilczek-Zee and Uhlmann holonomies.

Oreshkov and Sjoqvist, in preparation
Conclusion and outlook

• HQC can be done in subsystems (rather than subspaces).

• Adiabaic geometric control is compatible with the techniques for fault-tolerant computation on stabilizer codes.

 → HQC is in principle scalable.

 → the software protection of QEC could be aided by the robustness of HQC.

• FTHQC is possible with 2-qubit Hamiltonians (but the gadgets are inefficient).

• Is it possible to find a non-perturbative realization with 2-qubit interactions?

• Physical implementations?

• Can some of these ideas be useful for fault-tolerant adiabatic QC?