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A pairwise balanced design, PBD(v, K, 1), is an ordered pair (V, B), where
- V: finite set (points),
- B: family of subsets of V (blocks),
- each unordered pair of distinct points is contained in exactly one block,
- the sizes of blocks consist of the elements of K.

A PBD is said to be odd-replicate if each point appears in an odd number of blocks.

This kind of mathematical object has been studied since the 19th century
(i.e., we've got a bunch of mathematical tools).
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Low-density parity-check (LDPC) codes

LDPC codes are simply linear codes which are decodable by certain sub-optimal decoders.

The point is that LDPC codes can
« almost achieve the Shannon limit
» be decoded fast (in linear time)

To obtain better perfomrance, it is desirable for the
Tanner graphs of LDPC codes to be of "girth" 6 (or larger).




Entanglement-Assisted Quantum LDPC Codes from Combinatorial Designs

Yuichiro Fujiwara and Vladimir D. Tonchev

Department of Mathematical Sciences
Michigan Technological University

Entanglement—asszsted stabiliser formalism

Brun, Devetak, and Hsieh (2006)

Our goal:
Quantum error correcting codes with
Good error-correcting performance,

Flexibility, Classical coding theory

Low doco'dmg complc?mty ’ « Low- der151ty parlty check codes
Systematlc Constructlons. {used for digital television, Wi-Fi 502.11n, etc.) | allager (1960)

Combinatorial design theory

- Pairwise balanced designs
- Finite geometry [ |



“niro Fujiwara and Viadimir D. Tonche

Department of Mathematical Sciences
Michigan Technological University

Entanglement—a551sted stabiliser formalism

] Brun, Devetak, and Hsieh (2006)

Our goal:
Quantum error correcting codes witk
Good error-correcting performance,

Flexibility, ==

Classical



Stabilizer formalism
- requirs a sever condition (symplectic orthogonality),
- can emply only a limited range of classical codes (e.g., self-containing codes).

Entanglement-assisted stabilizer formalism
- removes the orthogonality condition with the help of preshared entanglement,
- allows the code designer to emply ANY binary or quaternary linear code.



EA-LDPC codes are quantum analogues of LDPC codes,
so they are defined by quantum versions of parity-check matrices.

Calderbank-Shor-Steane (CSS) construction

A quantum check matrix (of 2 homogenous quantum LOPC code) looks like:
H @
0 H
where His a parity-check matrix of a binary linear code (which forms a regular LDPC code),

H:ln k, dleode = [In, 2k —n + ¢, die]] EA-LDPC code, where ¢ = rank [HHT|

¢ is the amount of preshared entanglement, i.2., the required number of ebits,

Desirable EA-LDPC codes
- have large girth,
« consume a small number of ebits.

We consider EA-LDPC codes consuming only one ebit with the largest possible girth.
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Homogeneous EA-LDPC codes consuming only one ebit with girth 6 (which is the largest possible) are equivalent to
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H is an incidence matrix of a PBD with index 1
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Homogeneous EA-LDPC codes consuming only one ebit with girth 6 (w
odd-replicate PBDs. If the LDPC code used as an ingredient is regular,

Combinatorial design theory characterizes EA-LDPC codes

We can
- derive bounds on the minimum distance, dimensions, girth, etc.
- give necessary and sufficient conditions for the existence,
- explicit constructions,
- and more (e.g., EA-LDPC codes for channels with biased noise).
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H is an incidence matrix of a PBD with index 1
and odd replication number.

Theorem 2.4 A necessary condition for the existence of a reqular entanglement-assisted quantum LDPC code which

requires only one ebit and is of length n, girth six, and column weight w is that the number ~ +‘/2]{14_r#m_” is an

odd integer. Conversely, there exists a constant n, such that for every pair of positive integers n > n, and p the
necessary condition is sufficient.

Theorem 3.4 Let n be an integer greater than seven. Then, there exists a regular entanglement-assisted quantum
LDPC code of length n, dimension k, girth six, and column weight three which require only one ebit if and only if
V24dn+1 =5 (mod 8) and n — vV24n +1 < k < n — v24n + 1 4 2t — 2, where t is the integer satisfying
V24n +1 =2""Tu — 3 withu odd.

Theorem 3.7 The number of 6-cycles in the classical ingredient of a reqular entanglement-assisted quantum code

which requires only one ebit and is of length n, girth six, and column weight . is il _2“;\/1 Tanp(pw—T))
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haracterizes EA-LDPC codes
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Homogeneous EA-LDPC codes consuming only one ebit
are equivalent to odd-replecate PBDs.

- Can we characterize heterogeneous EA-LDPC codes?
- What if we allow multiple ebits?
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