Pulse techniques for decoupling qubits from noise: experimental tests

Steve Lyon, Princeton EE
Alexei Tyryshkin, Shyam Shankar,
Forrest Bradbury, Jianhua He, John Morton

• Bang-bang decoupling 31P nuclear spins
• Low-decoherence electron-spin qubits and global 1/f noise
• Dynamical decoupling of the qubits
 – Periodic pulse sequences
 – Concatenated pulse sequences
• Summary
Experiments

• 2-pulse Hahn echo

\[\frac{\pi}{2} \quad \tau \quad \pi \quad \tau \]

Pulses

FID – T_2^*

\[(|0\rangle + |1\rangle) \]

Echo

Signal

• Decoupling

\[\frac{\pi}{2} \quad \pi \quad \pi \]

\[(|0\rangle + |1\rangle) \]

Echo

Signal

\[(|0\rangle + |1\rangle) \]
Dynamical Decoupling

- Replace single π-pulse with sequence of pulses
 - Refocus spins rapidly ($< \text{noise correlation time}$)
 - “Bang-bang” – fast strong pulses (or 2 different spins)
 - CP (Carr-Purcell) – periodic π-pulses
 - $\pi_x/2-\tau-X-2\tau-X-2\tau-\ldots-X-\tau$-echo
 - CPMG (Carr-Purcell-Meiboom-Gill) – periodic π-pulses
 - $\pi_x/2-\tau-Y-2\tau-Y-2\tau-\ldots-Y-\tau$-echo
 - Aperiodic pulse sequences – concatenated sequences
 - Khodjasteh, Lidar, PRL 95, 180501 (2005); PRA 75, 062310 (2007).
 - $\pi_x/2-(p_{n-1}-X-p_{n-1}-Z-p_{n-1}-X-p_{n-1}-Z)-\tau-X-\tau$-echo with $Z=XY$
 - Yao, Liu, Sham, PRL 98, 077602 (2007). – concatenated CPMG
 - $\pi_x/2-(p_{n-1}-Y-p_{n-1}-p_{n-1}-Y-p_{n-1})-\tau-Y-\tau$-echo
 - Experimental pulses $\sim 1\mu s$ (for π-pulse)
 - Power $\sim 1/(\text{pulse length})^2 \Rightarrow \text{Energy/pulse} \sim \text{power}^{1/2}$
The Qubits: ^{31}P donors in Si

^{31}P donor: Electron spin (S) = $\frac{1}{2}$ and Nuclear spin (I) = $\frac{1}{2}$

X-band: magnetic field = 0.35 T

$\nu_{\mu w1} \sim 9.7$ GHz \neq $\nu_{\mu w2} \sim 9.8$ GHz

$\nu_{\text{rf1}} \sim 52$ MHz \neq $\nu_{\text{rf2}} \sim 65$ MHz

- Blue (microwave) transitions are usual ESR
- All transitions can be selectively addressed
Bang-Bang control

Fast nuclear refocusing

$^{31}\text{P donor: } S = \frac{1}{2} \text{ and } I = \frac{1}{2}$

- $\downarrow e, \downarrow n \quad |3\rangle$
- $\downarrow e, \uparrow n \quad |2\rangle$
- $\uparrow e, \downarrow n \quad |0\rangle$
- $\uparrow e, \uparrow n \quad |1\rangle$

$$\Psi_i = a|0\rangle + b|1\rangle \quad 2\pi \rightarrow \quad \Psi_f = a|0\rangle - b|1\rangle$$

Nuclear refocusing pulse would be ~10 μs
but electron pulse ~30 ns

(A) Free nuclear spin nutation

(B) One burst of 2π mw pulses

(C) Two bursts of 2π mw pulses
Electron spin qubits

- Doping $\sim 10^{15}$/cm3
- Isotopically purified 28Si:P
- 7K \Rightarrow electron $T_1 \sim$ 100’s milliseconds
- 7K \Rightarrow electron $T_2 \sim$ 60 milliseconds (extrapolating to \sim single donor)
Noise in electron spin echo signals

- Must use single pulses to measure decoherence
 \[\Rightarrow \text{About 100x sensitivity penalty} \]
B-field noise

Measure noise voltage induced in coil

Origin of noise unclear

Background field in lab?
Domains in the iron?

→ Essentially 1/f
Microwave Field Inhomogeneity

Carr-Purcell (CP) sequence
\[\pi_x/2 - \tau - X - 2\tau - X - 2\tau - \ldots - X - \tau - \text{echo} \]
Periodic (standard) CPMG

$\pi_x/2 - \tau - Y - 2\tau - Y - 2\tau - \ldots - Y - \tau$-echo

Self correcting sequence
Coherence after N pulses

Standard CPMG

$T_2 = 8.5\text{ms}$
Concatenated CPMG

\[\pi/2 \text{ pulse} \quad \pi \text{ pulse} \quad \pi \text{ pulse} \]

![Graph showing microwave signal with labeled time intervals.](image)
Coherence vs. concatenation level

Concatenated CPMG

- $l = 2$ (2 pulses)
- $l = 4$ (10 pulses)
- $l = 6$ (42 pulses)

$T_2 = 5.8\text{ms}$
Concatenated and periodic CPMG

Concatenated CPMG
42 pulses

Periodic CPMG
32 pulses
Fault-Tolerant Dynamical Decoupling

- $\pi_x/2 - (p_{n-1}X - p_{n-1}X - Y - p_{n-1}X - p_{n-1}X - Y) - \tau - X - \tau$-echo

- Not obvious that it self-corrects

Concatenated XZXZ (p2)

CPMG

Time (ms)
Coherence vs. concatenation level

Concatenated XZXZ pulse sequence

- p_1 (4 pulses)
- p_2 (14 pulses)
- p_3 (60 pulses)
- p_4 (242 pulses)
- p_5 (972 pulses)

$T_2 = 15\text{ms}$
Sanity check: collapse adjacent pulses

- Effect of combining pairs of adjacent pulses
 - Ex. $Z-Z \rightarrow I$
 - n^{th} level concatenation without combining $\Rightarrow 2 \cdot 4^n - 2 = 510$ for $n=4$
 - n^{th} level concatenation with combined pulses $= 306$ for $n=4$

![Graph showing concatenated XZXZ Echo Decay](image)
Sanity check: white noise

Si:P at 10 K

\[T_2 = 330 \, \mu s \]
\[T_1 = 420 \, \mu s \]
\[XZXZ(p3) = 410 \, \mu s \]
Summary

• Dynamical decoupling can work for electron spins
• Through the hyperfine interaction with the electron can generate very fast bang-bang control of nucleus
• CPMG preserves initial $\pi_x/2$ with fewest pulses
 – But does not deal with pulse errors for $\pi_y/2$
 – CPMG cannot protect arbitrary state
 • Concatenated CPMG does no better
• Can utilize concatenated XZXZ sequence out to at least 1000 pulses
 – Situation with $\pi_y/2$ initial states is more complex
 • Not clear fidelity improves monotonically with level
 • But much better than CP
 • May need to combine XZXZ with composite pulses