Robust Quantum Error-Correction
via Convex Optimization

Robert Kosut
SC Solutions
Systems & Control Division
Sunnyvale, CA

Alireza Shabani
EE Dept.
USC
Los Angeles, CA

Daniel Lidar
USC
Los Angeles, CA

Presented at QEC-07
University of Southern California, Los Angeles
Dec. 17-21, 2007

Research supported by DARPA QuIST Program (Quantum Information Science & Technology)
Robust Quantum Error-Correction
via Convex Optimization

Robert Kosut
SC Solutions
Systems & Control Division
Sunnyvale, CA

Alireza Shabani
EE Dept.
USC
Los Angeles, CA

Daniel Lidar
USC
Los Angeles, CA

Presented at QEC-07
University of Southern California, Los Angeles
Dec. 17-21, 2007

Research supported by DARPA QuIST Program (Quantum Information Science & Technology)
“In a machine such as this there are very many other problems due to imperfections. . . . At least some of these problems can be remedied in the usual way by techniques such as error correcting codes . . . But until we find a specific implementation for this computer, I do not know how to proceed to analyze these effects. However, it appears that they would be very important in practice. This computer seems to be very delicate and these imperfections may produce considerable havoc.”
“In a machine such as this there are very many other problems due to imperfections. . . . At least some of these problems can be remedied in the usual way by techniques such as error correcting codes . . . But until we find a specific implementation for this computer, I do not know how to proceed to analyze these effects. However, it appears that they would be very important in practice. This computer seems to be very delicate and these imperfections may produce considerable havoc.”
• Concerns

 – **Robustness** Perfect QEC schemes, as well those produced by optimization tuned to specific errors, are often not robust to even small changes in the noise channel.

 – **Cost** The encoding and recovery effort in perfect QEC typically grows exponentially with the number of errors in the noise channel.

• A robust optimization approach to QEC can address these.

 – **Robustness** Noise channels which do not satisfy the standard assumptions for perfect correction can be incorporated.

 – **Cost** If robust fidelity levels are sufficiently high, then no further increases in codespace dimension and/or levels of concatenation are necessary. This assessment, which is critical to any specific implementation, is not knowable without performing the robust optimization.
Outline

- Problem formulation
- Direct fidelity maximization
- Indirect fidelity maximization
- Numerical Examples
- Conclusions
Error correction model

OSR model

\[\rho_S \xrightarrow{C} \rho_C \xrightarrow{\mathcal{E}} \sigma_C \xrightarrow{\mathcal{R}} \tilde{\rho}_S = \sum_{r,e,c} (R_r E_e C_c) \rho_S (R_r E_e C_c)^\dagger \]

\[\mathcal{R} = \left\{ R_r \sim n_S \times n_C, \ r = 1, \ldots, m_R \ \middle| \sum_r R_r^\dagger R_r = I_{n_C} \right\} \]

\[\mathcal{E} = \left\{ E_e \sim n_C \times n_C, \ e = 1, \ldots, m_E \ \middle| \sum_e E_e^\dagger E_e = I_{n_C} \right\} \]

\[\mathcal{C} = \left\{ C_c \sim n_C \times n_S, \ c = 1, \ldots, m_C \ \middle| \sum_c C_c^\dagger C_c = I_{n_S} \right\} \]

Design goal

Determine encoding \(\mathcal{C} \) and recovery \(\mathcal{R} \) to so that the noisy channel, \(\mathcal{R}\mathcal{E}\mathcal{C} \), is as close as possible to a desired unitary \(U_S \).
UBIQUITOUS FOR QIP/QEC

CONTROL IS REQUIRED EVERYWHERE THERE IS A DESIRED UNITARY.

Source: 1969 Doubleday Book Cover
UBIK by Philip K. Dick
Fidelity between \mathcal{REC} and U_S

$$f = \frac{1}{n_S^2} \sum_{r,e,c} |\text{Tr} U_S^\dagger R_r E_e C_c|^2$$

Perfect error correction, $f = 1$, if and only if there are constants α_{rec} such that

$$R_r E_e C_c = \alpha_{\text{rec}} U_S, \quad \sum_{r,e,c} |\alpha_{\text{rec}}|^2 = 1.$$

This suggests the \textit{indirect} measure of fidelity, the “distance-like” error,

$$d = \sum_{r,e,c} \| R_r E_e C_c - \alpha_{\text{rec}} U_S \|_{\text{fro}}^2$$

Direct Fidelity Maximization

\[
\text{maximize } \quad f = \frac{1}{n^2_s} \sum_{r,e,c} |\text{Tr } U_S^\dagger R_r E_e C_c|^2
\]

subject to \(\sum_r R_r^\dagger R_r = I_{n_C}, \quad \sum_c C_c^\dagger C_c = I_{n_S} \)

Indirect Fidelity Maximization

\[
\text{minimize } \quad d = \sum_{r,e,c} \| R_r E_e C_c - \alpha_{rec} U_S \|^2_{\text{fro}}
\]

subject to \(\sum_r R_r^\dagger R_r = I_{n_C}, \quad \sum_c C_c^\dagger C_c = I_{n_S}, \quad \sum_{r,e,c} |\alpha_{rec}|^2 = 1 \)

Both are non-convex optimizations for which local solutions can be found from a bi-convex iteration between recovery and encoding.

\[\text{a} \quad \text{M. Reimpell & R. F. Werner, Phys. Rev. Lett. (2005)}\]
Direct fidelity maximization

\[
\text{maximize } f = \frac{1}{n_S^2} \sum_{r,e,c} \left| \text{Tr} \ U_S^\dagger R_r E_e C_c \right|^2
\]

subject to \(\sum_c C_c^\dagger C_c = I_S, \sum_r R_r^\dagger R_r = I_C \)

Expand OSR elements in a fixed basis

\[
C_c = \sum_{i=1}^{n_S} x_{ci} B_{Ci}, \ B_{Ci} \sim n_C \times n_S
\]

\[
R_r = \sum_{i=1}^{n_S} x_{ri} B_{Ri}, \ B_{Ri} \sim n_S \times n_C
\]

Direct fidelity maximization is equivalent to

\[
\text{maximize } f = \sum_{i,j,k,l} (X_R)_{ij} (X_C)_{k\ell} F_{ijkl}(\mathcal{E})
\]

subject to \(\sum_{i,j} (X_R)_{ij} B_{R_i}^\dagger B_{R_j} = I_n_C, \ \sum_{k,l} (X_C)_{k\ell} B_{C_k}^\dagger B_{C_\ell} = I_n_S \)

\[
(X_R)_{ij} = \sum_r x_{ri} x_{rj}^*, \ (X_C)_{k\ell} = \sum_c x_{ck} x_{c\ell}^*
\]

\[
F_{ijkl}(\mathcal{E}) = \sum_e \left(\text{Tr} \ U_S^\dagger B_{R_i} E_e B_{C_k} \right) \left(\text{Tr} \ U_S^\dagger B_{R_j} E_e B_{C_\ell} \right)^*/n_S^2
\]
Process matrices \(X_R, X_C \sim n_S n_C \times n_S n_C \)

\[
(X_R)_{ij} = \sum_r x_{ri} x_{rj}^* \\
(X_C)_{k\ell} = \sum_c x_{ck} x_{c\ell}^*
\]

\[
\text{relax quadratic constraints to semidefinite constraints} \implies \begin{aligned}
X_R &\geq 0 \\
X_C &\geq 0
\end{aligned}
\]

Relaxed direct fidelity maximization

\[
\text{maximize } f = \sum_{i,j,k,\ell} (X_R)_{ij} (X_C)_{k\ell} F_{ij,k\ell}(\mathcal{E})
\]

subject to \(X_R \geq 0, \sum_{i,j} (X_R)_{ij} B_{Ri}^\dagger B_{Rj} = I_n,\)

\[
X_C \geq 0, \sum_{k,\ell} (X_C)_{k\ell} B_{Ck}^\dagger B_{C\ell} = I_n
\]

- not a convex optimization jointly in \(X_R \) and \(X_C \)

- convex (SDP) in \(X_R \) for a given \(X_C \) and in \(X_C \) for a given \(X_R \) \(\Rightarrow \) local solution obtained from a bi-convex iterative optimization – Semidefinite Programs (SDPs) – in encoding and recovery process matrices \(X_C \) and \(X_R \)
Given encoding \mathcal{C}, optimal recovery process matrix is solution of the SDP

$$\begin{align*}
\text{maximize} & \quad f = \text{Tr} \ X_R W_R(\mathcal{E}, \mathcal{C}) \\
\text{subject to} & \quad X_R \geq 0, \quad \sum_{i,j} (X_R)_{ij} B_{Ri}^\dagger B_{Rj} = I_{n_C}
\end{align*}$$

OSR elements R_r obtained from X_R via the singular value decomposition

$$X_R = V S V^\dagger \Rightarrow R_r = \sum_{i=1}^{n_S n_C} \sqrt{s_r} V_{ir} B_{Ri}, \quad r = 1, \ldots, n_S n_C$$
Given encoding \mathcal{C}, optimal recovery process matrix is solution of the SDP

\[
\begin{align*}
\text{maximize} & \quad f = \text{Tr} \ X_R W_R(\mathcal{E}, \mathcal{C}) \\
\text{subject to} & \quad X_R \geq 0, \quad \sum_{i,j} (X_R)_{ij} B_{R_i}^\dagger B_{R_j} = I_{n_C}
\end{align*}
\]

OSR elements R_r obtained from X_R via the singular value decomposition

\[
X_R = V S V^\dagger \quad \Rightarrow \quad R_r = \sum_{i=1}^{n_S n_C} \sqrt{s_r} V_{ir} B_{R_i}, \quad r = 1, \ldots, n_S n_C
\]

Given recovery \mathcal{R}, optimal encoding process matrix is solution of the SDP

\[
\begin{align*}
\text{maximize} & \quad f = \text{Tr} \ X_C W_C(\mathcal{E}, \mathcal{R}) \\
\text{subject to} & \quad X_C \geq 0, \quad \sum_{i,j} (X_C)_{ij} B_{C_i}^\dagger B_{C_j} = I_{n_S}
\end{align*}
\]

OSR elements C_c obtained from X_C via the singular value decomposition

\[
X_C = V S V^\dagger \quad \Rightarrow \quad C_c = \sum_{i=1}^{n_S n_C} \sqrt{s_c} V_{ic} B_{C_i}, \quad c = 1, \ldots, n_S n_C
\]
Iterative direct fidelity maximization

\begin{align*}
&\text{(XR-XC)-SDP} \\
\text{Initialize OSR } C \rightarrow \text{Process Matrix } X_C \\
\text{Repeat} \\
&1. \text{Compute } X_R \text{ (via SDP)} \\
&\quad \text{maximize } \text{Tr } X_R W_R(\mathcal{E}, X_C) \\
&\quad \text{subject to } X_R \geq 0, \quad \sum_{i,j} (X_R)_{ij} B_{Ri}^\dagger B_{Rj} = I_{n_C} \\
&2. \text{Compute } X_C \text{ (via SDP)} \\
&\quad \text{maximize } \text{Tr } X_C W_C(\mathcal{E}, X_R) \\
&\quad \text{subject to } X_C \geq 0, \quad \sum_{i,j} (X_C)_{ij} B_{Ci}^\dagger B_{Cj} = I_{n_S} \\
\text{Until} \\
&f(X_R, X_C) \text{ stops increasing} \\
\end{align*}

- Each step can only increase $f(X_R, X_C)$.
- Compute OSRs (\mathcal{R}, C) via SVDs at termination.
Error system uncertainty

- error system is one of a number of possible error systems:

\[\mathcal{E}_\beta = \left\{ E_{\beta e} \mid e = 1, \ldots, m_E \right\}, \beta = 1, \ldots, \ell \]

- sources of uncertainty
 - different runs of a tomography experiment can yield different error channels.
 - a physical model generated by a Hamiltonian \(H(\theta) \) dependent upon an uncertain set of parameters \(\theta \) – taking a sample \(\{H(\theta_\beta)\}_{\beta=1}^\ell \) will result in a set of error systems

- errors can be mitigated by
 - fault-tolerant methods which rely on several levels of code concatenation and/or
 - robust error correction
Robust error correction

<table>
<thead>
<tr>
<th>Worst-Case</th>
<th>Average-Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximize (\min_{\beta} \ \text{Tr} \ X_R W_R(\mathcal{E}_\beta, C))</td>
<td>maximize (\text{Tr} \ X_R \langle W_R(\mathcal{E}\beta, C) \rangle\beta)</td>
</tr>
<tr>
<td>subject to (X_R \geq 0), (\sum_{i,j} (X_R){ij} B{R_i}^\dagger B_{R_j} = I_{n_C})</td>
<td>subject to (X_R \geq 0), (\sum_{i,j} (X_R){ij} B{R_i}^\dagger B_{R_j} = I_{n_C})</td>
</tr>
<tr>
<td>maximize (\min_{\beta} \ \text{Tr} \ X_C W_C(\mathcal{E}_\beta, \mathcal{R}))</td>
<td>maximize (\text{Tr} \ X_C \langle W_C(\mathcal{E}\beta, \mathcal{R}) \rangle\beta)</td>
</tr>
<tr>
<td>subject to (X_C \geq 0), (\sum_{i,j} (X_C){ij} B{C_i}^\dagger B_{C_j} = I_{n_S})</td>
<td>subject to (X_C \geq 0), (\sum_{i,j} (X_C){ij} B{C_i}^\dagger B_{C_j} = I_{n_S})</td>
</tr>
</tbody>
</table>

- Iterating between \(\mathcal{R} \) and \(C \) results again in bi-convex (SDP) iterations
Indirect approach to fidelity maximization

System-ancilla model with unitary encoding

\[\rho_S \xrightarrow{U_C} \rho_C \xrightarrow{\mathcal{E}} \rho_C \sigma_C \xrightarrow{U_R} \hat{\rho}_S \]

\[|0_{CA}\rangle \xrightarrow{U_C} |0_{RA}\rangle \xrightarrow{U_R} \hat{\rho}_S \]

\[U_C = [C \cdots], \quad C \sim n_C \times n_S, \quad C^\dagger C = I_{n_S} (n_C = n_S n_{CA}) \]

\[U_R = [R \cdots], \quad R = \begin{bmatrix} R_1 \\ \vdots \\ R_{m_R} \end{bmatrix}, \quad R_i \sim n_S \times n_C, \quad m_R = n_{CA} n_{RA}, \quad R^\dagger R = I_{n_C} \]

Indirect measure

\[d = \sum_{r,e} \| R_r E_e C - \alpha_{re} U_S \|_{\text{fro}}^2 = \| RE(I_{m_E} \otimes C) - \alpha \otimes U_S \|_{\text{fro}}^2 \]

\[\alpha \sim m_R \times m_E, \quad \| \alpha \|_{\text{fro}} = 1 \]
Indirect fidelity maximization

\[
\begin{align*}
\text{minimize} \quad & d = \| RE(I_{m_E} \otimes C) - \alpha \otimes U_S \|_{\text{fro}}^2 \\
\text{subject to} \quad & R^\dagger R = I_{n_C}, \quad C^\dagger C = I_{n_S}, \quad \text{Tr} \alpha^\dagger \alpha = 1
\end{align*}
\]

\[
\begin{align*}
R & \quad n_C \times n_R \times n_S \times n_C \\
E & \quad n_C \times m_E \times n_C \\
C & \quad n_C \times n_S \\
\alpha & \quad n_C \times n_R \times n_A \times m_E
\end{align*}
\]
Indirect fidelity maximization

\[
\begin{align*}
\text{minimize} & \quad d = \| RE(I_{m_E} \otimes C) - \alpha \otimes U_S \|_{\text{fro}}^2 \\
\text{subject to} & \quad R^\dagger R = I_{n_C}, \quad C^\dagger C = I_{n_S}, \quad \text{Tr} \quad \alpha^\dagger \alpha = 1
\end{align*}
\]

Optimization over \(R \) gives the equivalent problem

\[
\begin{align*}
\text{minimize} & \quad n_S + \text{Tr} \ E(I_{m_E} \otimes CC^\dagger)E^\dagger - 2\text{Tr} \sqrt{E(\gamma \otimes CC^\dagger)E^\dagger} \\
\text{subject to} & \quad C^\dagger C = I_{n_S}, \quad \text{Tr} \gamma = 1, \quad \gamma \geq 0
\end{align*}
\]

- optimization variables are \(C \) and \(\gamma = \alpha^\dagger \alpha \sim m_E \times m_E \).
- optimizing \(R \) is

\[
\begin{align*}
R = VU^\dagger \\
E(\alpha^\dagger \otimes CU_S) = USV^\dagger
\end{align*}
\]

\[
\begin{align*}
U & \sim n_C \times n_C \text{ unitary} \\
S & = \text{diag}(s_1, \cdots, s_{n_C}), \quad s_1 \geq \cdots \geq s_{n_C} \geq 0 \\
V & \sim n_C n_{RA} \times n_C, \quad V^\dagger V = I_{n_C}
\end{align*}
\]
Indirect fidelity maximization

\[
\text{minimize} \quad d = \| RE(I_{m_E} \otimes C) - \alpha \otimes U_S \|_{\text{fro}}^2 \\
\text{subject to} \quad R^\dagger R = I_{n_C}, \quad C^\dagger C = I_{n_S}, \quad \text{Tr} \ \alpha^\dagger \alpha = 1
\]

Optimization over \(R \) gives the equivalent problem

\[
\text{minimize} \quad n_S + \text{Tr} \ E(I_{m_E} \otimes CC^\dagger)E^\dagger - 2\text{Tr} \ \sqrt{E(\gamma \otimes CC^\dagger)E^\dagger}
\\
\text{subject to} \quad C^\dagger C = I_{n_S}, \quad \text{Tr} \ \gamma = 1, \quad \gamma \geq 0
\]

- optimization variables are \(C \) and \(\gamma = \alpha^\dagger \alpha \sim m_E \times m_E \).
- optimizing \(R \) is

\[
R = (\alpha \otimes U_S C^\dagger) E^\dagger \sqrt{E(\gamma \otimes CC^\dagger)E^\dagger}^{-1}
\]
Given C and γ, the following construction for α achieves the optimizing R

\[
\begin{align*}
\begin{array}{l}
n_{CA} \geq m_E \\
n_{RA} = 1
\end{array}
\Rightarrow \alpha = \left[\begin{array}{c}
\sqrt{\gamma} \\
0
\end{array}\right]_{n_{CA} \times m_E \times m_E} \\
R \text{ is unitary } (n_C \times n_C)
\end{align*}
\]

\[
\begin{align*}
\begin{array}{l}
n_{CA} < m_E \\
n_{RA} n_{CA} = m_E
\end{array}
\Rightarrow \alpha = \sqrt{\gamma} \\
R \text{ is tall } (m_E n_S \times n_C)
\end{align*}
\]

- If $n_{CA} \geq m_E$, then R is unitary and no recovery ancillas are needed, i.e., $n_{RA} = 1$, and $U_R = R$.\(^a\)

- If $n_{CA} < m_E$, add recovery ancilla so that $m_E = n_{CA} n_{RA}$.

 - $n_{RA} = 2^{q_{RA}} \Rightarrow$ may require padding R with zeroes.

Iterative indirect fidelity maximization

Given encoding C, solve for γ from the SDP

$$\begin{align*}
\text{maximize} & \quad \text{Tr} \sqrt{E(\gamma \otimes CC^\dagger)E^\dagger} \\
\text{subject to} & \quad \gamma \geq 0, \quad \text{Tr} \gamma = 1
\end{align*}$$

Obtain recovery (R, α) from the previous construction $\gamma \rightarrow (R, \alpha)$
Iterative indirect fidelity maximization

Given encoding C, solve for γ from the SDP

\[
\begin{align*}
\text{maximize} & \quad \text{Tr} \sqrt{E(\gamma \otimes CC^\dagger)} E^\dagger \\
\text{subject to} & \quad \gamma \geq 0, \quad \text{Tr} \gamma = 1
\end{align*}
\]

Obtain recovery (R, α) from the previous construction $\gamma \rightarrow (R, \alpha)$

Given recovery (R, α) solve for C

\[
\begin{align*}
\text{minimize} & \quad d(R, C, \alpha) = \|RE(Im_E \otimes C) - \alpha \otimes U_S\|_{\text{fro}}^2 \\
\text{subject to} & \quad C^\dagger C = I_{n_S}
\end{align*}
\]
Iterative indirect fidelity maximization

Given encoding C, solve for γ from the SDP

\[
\begin{align*}
\text{maximize} & \quad \text{Tr} \sqrt{E(\gamma \otimes CC^\dagger)}E^\dagger \\
\text{subject to} & \quad \gamma \geq 0, \quad \text{Tr} \gamma = 1
\end{align*}
\]

Obtain recovery (R, α) from the previous construction $\gamma \rightarrow (R, \alpha)$

Given recovery (R, α) solve for C

\[
\begin{align*}
\text{minimize} & \quad d(R, C, \alpha) = \|RE(Im_E \otimes C) - \alpha \otimes U_S\|_2^2 \\
\text{subject to} & \quad C^\dagger C = I_{n_S}
\end{align*}
\]

Equivalent to **Constrained Least-Squares**

\[
C = C_{ls} \sqrt{(C_{ls}^\dagger C_{ls})^{-1}}, \quad C_{ls} = \sum_{r,e} \alpha_{re} (R_r E_e)^\dagger = \min_C d(R, C, \alpha)
\]
Iterative indirect fidelity maximization

Given encoding C, solve for γ from the SDP

\[
\begin{align*}
\text{maximize} & \quad \text{Tr} \sqrt{E(\gamma \otimes CC^\dagger)} E^\dagger \\
\text{subject to} & \quad \gamma \geq 0, \quad \text{Tr} \gamma = 1
\end{align*}
\]

Obtain recovery (R, α) from the previous construction $\gamma \rightarrow (R, \alpha)$

Given recovery (R, α) solve for C

\[
\begin{align*}
\text{minimize} & \quad d(R, C, \alpha) = \|RE(I_{mE} \otimes C) - \alpha \otimes U_S\|_{\text{fro}}^2 \\
\text{subject to} & \quad C^\dagger C = I_{n_S}
\end{align*}
\]

Equivalent to **Constrained Least-Squares**

\[
C = C_{ls} \sqrt{(C_{ls}^\dagger C_{ls})^{-1}}, \quad C_{ls} = \sum_{r,e} \alpha_{re} (R_r E_e)^\dagger = \min_C d(R, C, \alpha)
\]

via SVD:

\[
C_{ls} = U \begin{bmatrix} S \\ 0 \end{bmatrix} V^\dagger \quad \rightarrow \quad C = U \begin{bmatrix} I_{n_S} \\ 0 \end{bmatrix} V^\dagger
\]
Iterative indirect fidelity maximization

\[(R-\gamma-C')-SDP\]

Initialize \(R \) and \(C \)

Repeat

1. Compute \(\gamma \rightarrow \alpha \) (via SDP)
 - maximize \(\text{Tr} \sqrt{E(\gamma \otimes CC^\dagger)E^\dagger} \)
 - subject to \(\gamma \geq 0, \text{Tr} \gamma = 1 \)

2. Compute \(R \) (via SVD)
 \[R = (\alpha \otimes U_S C^\dagger) E^\dagger \left(E \left(\alpha^\dagger \alpha \otimes CC^\dagger \right) E^\dagger \right)^{-1/2} \]

3. Compute \(C \) (via SVD)
 \[C = C_{ls} \left(C_{ls}^\dagger C_{ls} \right)^{-1/2}, \quad C_{ls} = \sum_{r,e} \alpha_{re} (R_r E_e)^\dagger \]

Until

\(d(R, C, \alpha) \) stops decreasing

- Each step can only decrease \(d(R, C, \alpha) \).
Alternate computation of indirect optimal recovery

Relation between fidelity $f(R, C)$ and distance $d(R, C, \alpha)$:

$$f(R, C) \geq (1 - d(R, C, \alpha)/2n_S)^2$$

Equality iff α solves the **constrained least-squares** problem:

$$\min_{\alpha, \alpha^\dagger \alpha = 1} d(R, C, \alpha) \Rightarrow \alpha_{re} = \frac{\text{Tr} \ R_r E_e C}{n_S \sqrt{f(R, C)}} = \frac{\text{Tr} \ R_r E_e C}{\sqrt{\sum_{r,e} |\text{Tr} \ R_r E_e C|^2}}$$
Alternate computation of indirect optimal recovery

Relation between fidelity $f(R, C)$ and distance $d(R, C, \alpha)$:

$$f(R, C) \geq (1 - d(R, C, \alpha)/2n_S)^2$$

Equality iff α solves the **Constrained Least-Squares** problem:

$$\min_{\alpha, \alpha^\dagger \alpha = 1} d(R, C, \alpha) \Rightarrow \alpha\text{re} = \frac{\text{Tr} \ R_r E_e C}{n_S \sqrt{f(R, C)}} = \frac{\text{Tr} \ R_r E_e C}{\sqrt{\sum_{r,e} |\text{Tr} \ R_r E_e C|^2}}$$

<table>
<thead>
<tr>
<th>(R-\alpha)-LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize $R, \ C$</td>
</tr>
<tr>
<td>Repeat</td>
</tr>
<tr>
<td>1. Compute α from above</td>
</tr>
<tr>
<td>2. Compute $R = VU^\dagger$ from SVD: $E(\alpha^\dagger \otimes C U_S^\dagger) = U S V^\dagger$</td>
</tr>
<tr>
<td>Until $d(R, C, \alpha)$ stops decreasing</td>
</tr>
</tbody>
</table>

- No convex optimization required: LS for α and SVD to get R.
- **Conjecture** – Given C, returns a global d-optimal recovery equivalent to the previous $(R-\gamma)$-SDP.
Iterative indirect fidelity maximization

<table>
<thead>
<tr>
<th>(R-α-C)-LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize (R) and (C)</td>
</tr>
<tr>
<td>Repeat</td>
</tr>
<tr>
<td>1. Compute (\alpha)</td>
</tr>
</tbody>
</table>
| \[
\alpha_{re} = \left(\text{Tr } R_r E_e C \right) \left(\sum_{r,e} |\text{Tr } R_r E_e C|^2 \right)^{-1/2}
\] |
| 2. Compute \(R \) (via SVD) |
| \[
R = \left(\alpha \otimes U_S C^\dagger \right) E^\dagger \left(E \left(\alpha^\dagger \alpha \otimes C C^\dagger \right) E^\dagger \right)^{-1/2}
\] |
| 3. Compute \(C \) (via SVD) |
| \[
C = C_{ls} \left(C_{ls}^\dagger C_{ls} \right)^{-1/2}, \quad C_{ls} = \sum_{r,e} \alpha_{re} (R_r E_e)^\dagger
\] |
| **Until** |
| \(d(R, C, \alpha) \) stops decreasing |

- Each step can only decrease \(d(R, C, \alpha) \).
- Each step is a form of Constrained-Least-Squares.
Structure of recovery

For \(m_E > n_{CA} \), \(\alpha \sim m_E \times m_E \) (\(= \sqrt{\gamma} \)) with SVD

\[
\alpha = VSW^\dagger \left\{ \begin{array}{l}
V, W \sim m_E \times m_E \text{ unitaries} \\
S = \text{diag}(s_1 \cdots s_k 0 \cdots 0), s_k > 0
\end{array} \right.
\]

Then,

\[
R = (\alpha \otimes USC^\dagger) \left(E^\dagger \sqrt{(E(\gamma \otimes CC^\dagger)E^\dagger)^{-1}} \right)
= (V \otimes I_{nS})(S \otimes USC^\dagger)F^\dagger \sqrt{(F(S^2 \otimes CC^\dagger)F^\dagger)^{-1}}
\]

with

\[
F = E(W \otimes I_{nC}) = [F_1 \cdots F_{mE}]
\]

- \(W \) is unitary freedom in error OSR
- \(V^\dagger \) is unitary freedom in recovery OSR \(\Rightarrow \) reduces to \(k \) OSR elements

\[
\overline{R}_i = s_i USC^\dagger F_i^\dagger \left(\sum_{j=1}^{k} s_j^2 F_j CC^\dagger F_j^\dagger \right)^{-1}, \ i = 1, \ldots, k
\]

- more efficient then reduction via SVD of process matrix
Computational cost

<table>
<thead>
<tr>
<th>Operation</th>
<th>Method</th>
<th>SDP Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>((n_C = n_S n_{CA}))</td>
</tr>
<tr>
<td>Recovery</td>
<td>Direct</td>
<td>Primal-SDP ((n_S^2 - 1)n_C^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dual-SDP (n_C^2)</td>
</tr>
<tr>
<td></td>
<td>Indirect</td>
<td>SDP ((n_{CA} n_{RA})^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS 0</td>
</tr>
<tr>
<td>Encoding</td>
<td>Direct</td>
<td>Primal-SDP ((n_C^2 - 1)n_S^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dual-SDP (n_S^2)</td>
</tr>
<tr>
<td></td>
<td>Indirect</td>
<td>LS 0</td>
</tr>
</tbody>
</table>

- Iterations to solve SDPs depend on number of variables, constraints, etc.
- Dual → Primal requires solving linear equations
- Process matrix via SDP → Recovery or Encoding OSR requires SVD.
- Recovery via \((R-\gamma)\)-SDP → Recovery OSR requires iterations + SVD
- Recovery via \((R-\alpha)\)-LS → Recovery OSR requires SVD
- Encoding LS → Encoding OSR requires SVD
• Exponential scaling with qubits seems unavoidable

• The indirect methods also support both the robust worst-case & average-case criteria for the error system set

\[\mathcal{E} \in \left\{ \mathcal{E}_\beta \mid \beta = 1, \ldots, \ell \right\} \]
Recovery & Encoding via Iterative Optimization

4-qubit weight-2 single unitary error, $p = 0.2$

- $(R-\alpha-C)-LS$ (solid line, $f=0.98450$, 5 min)
- $(R-\gamma)-SDP, C-LS$ (dashed line, $f=0.98177$, 5 min)
- $f_0 \approx 0.7$
- C-DFS4
- C-0 (dash-dotted line, $f=0.98551$, 2.6 sec)

iterations vs. fidelity

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

0 20 40 60 80 100
Iterated recovery $\Rightarrow (\alpha, \gamma) \sim 11 \times 11$ for weight-2 unitary errors

- α is a complex matrix – looks like an 8×11
- SVD of γ shows 8 significant terms (explains reduction from 11)
- 8 significant singular values in 32×32 recovery process matrix
- iterated encoding far from DFS4 encoding: $f(C_{\text{DFS4}}, C) = 0.13$
10 runs initiaized at random encodings ($C \sim 16 \times 2$)

- final fidelities appear to be converging
- initial encodings are very different from each other
- final recoveries & encodings are all very different from each other
 - global optimum is not unique?
10 runs initialized at random encodings ($C \sim 16 \times 2$)

- final fidelities appear to be converging
- initial encodings are very different from each other
- final recoveries & encodings are all very different from each other
 - global optimum is not unique?
Weight-2 single-random unitary errors for 4-qubit codes.

\[\frac{(1 - f_{\text{DFS-4}})}{(1 - f)} \]

(DFS-4 – perfect against collective errors)
Optimal Recovery

- Preserve single qubit \((n_S = 2^1, \ U_S = I_2) \) in 5-qubit codespace \((n_C = 2^5) \)

- [5, 1, 3] encoding – perfect against arbitrary weight-1 errors and against weight-2 bit-flip errors \textit{with ideal recovery}
Optimal Recovery

- Preserve single qubit ($n_S = 2^1$, $U_S = I_2$) in 5-qubit codespace ($n_C = 2^5$)

- [5, 1, 3] encoding – perfect against arbitrary weight-1 errors and against weight-2 bit-flip errors with ideal recovery

<table>
<thead>
<tr>
<th>Method</th>
<th>Fidelity</th>
<th>m_E ($\mathcal{R} \sim 2 \times 32 \times m_E$)</th>
<th>CPU (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct-SDP</td>
<td>1.0</td>
<td>64 → 16</td>
<td>38.8</td>
</tr>
<tr>
<td>Indirect ($R-\gamma$)-SDP</td>
<td>1.0</td>
<td>16</td>
<td>12.8</td>
</tr>
<tr>
<td>Indirect ($R-\alpha$)-LS</td>
<td>1.0</td>
<td>16</td>
<td>0.063 (5×)</td>
</tr>
</tbody>
</table>
Optimal Recovery

- Preserve single qubit \((n_S = 2^1, U_S = I_2)\) in 5-qubit codespace \((n_C = 2^5)\)
- \([5, 1, 3]\) encoding – perfect against arbitrary weight-1 errors and against weight-2 bit-flip errors with ideal recovery

| Weight-2 bit-flip errors \(p = 0.2, \mathcal{E} \sim 32 \times 32 \times 16\) |
|-----------------|-----------------|-----------------|-----------------|
| Method | Fidelity | \(m_E\) | CPU (sec) |
| Direct-SDP | 1.0 | \(64 \rightarrow 16\) | 38.8 |
| Indirect \((R-\gamma)\)-SDP | 1.0 | 16 | 12.8 |
| Indirect \((R-\alpha)\)-LS | 1.0 | 16 | 0.063 (5\times) |

| Weight-3 bit-flip errors \(p = 0.2, \mathcal{E} \sim 32 \times 32 \times 26\) |
|-----------------|-----------------|-----------------|-----------------|
| Method | Fidelity | \(m_E\) | CPU (sec) |
| Direct-SDP | 0.94845 | \(64 \rightarrow 16\) | 40.6 |
| Indirect \((R-\gamma)\)-SDP | 0.94845 | 26 \rightarrow 16 | 31.6 |
| Indirect \((R-\alpha)\)-LS | 0.94845 | 26 \rightarrow 16 | 0.41 (10\times) |
Recovery \((\alpha, \gamma) \sim 26 \times 26\) for weight-3 bit-flip errors

- all elements of \(\alpha\) and \(\gamma\) are real (in this example)

- \(\gamma\) is diagonal with 16 non-zero elements
 - explains reduction of recovery to 16 OSR elements
Weight-2 & 3 bit-flip errors, [5, 1, 3] encoding, optimal & average-case recoveries

![Graph showing the performance of weight-2 and weight-3 encoding with optimal and average-case recoveries. The graph plots the function $f_{avg}(R,E,C)$ against p, the bit-flip error probability. The x-axis represents p, and the y-axis represents $f_{avg}(R,E,C)$. The graph includes markers for optimal and average-case weight-2 and weight-3 errors, with distinct symbols for optimal and average-case performance.](image-url)
Recovery & Encoding via Iterative Optimization

5-qubit, weight-3 unitary error, $p = 0.2$

$(R-\gamma)$-SDP, C-LS
84.5 min/40 iterations
Initial $[5,1,3]$ $f = 0.93601$

$(R-\alpha-C)$-LS
27 sec/100 iterations
(max 6 $(R-\alpha)$ iterations)

$f = 0.99656$

$f = 0.99661$
Recovery & Encoding via Iterative Optimization

5-qubit, weight-3 unitary error, $p = 0.2$

Initial C-0
$f = 0.62304$

Initial [5,1,3]
$f = 0.93601$

$(R-\alpha-C)-LS$
27 sec/100 iterations
(max 6 (R-\alpha) iterations)

$(R-\gamma)-SDP, C-LS$
84.5 min/40 iterations

$(R-\gamma)-SDP, C-LS$

$f = 0.99656$

$f = 0.99661$
Iterated recovery $\Rightarrow (\alpha, \gamma) \sim 26 \times 26$ for weight-3 unitary errors

- γ is a complex matrix (in this example)
- SVD of γ shows 16 significant terms (explains reduction from 26)
- iterated encoding similar to $[5,1,3]$ encoding: $f(C_{[5,1,3]}, C) = 0.95$
- iterated recovery far from $[5,1,3]$ recovery: $f(R_{[5,1,3]}, R) = 0.05$
Weight-2 all-random unitary error for 5-qubit codes.

\[f_{\text{avg}}(R,E,C) = \frac{1 - f_{[5,1,3]}}{1 - f} \]
Conclusions

- optimal and/or robust codes potentially mitigate the need for higher dimensional codes or further levels of concatenation.
 - codes can be tuned for a range of error models

- optimal and robust designs via indirect approach is more efficient than direct approach
 - least-squares (SVD) vs. convex optimization (SDP)

- indirect approach reveals some structure of the recovery
Issues & extensions

- incorporate structure, e.g., fault-tolerant and concatenation architectures
 - non-unique global optimum may provide this design freedom

- incorporate specific knowledge, e.g., specific inputs, specific physical models, specific knowledge about the “imperfections”

- how to optimize – one module at a time, a robust design over a large set of modules, ...

- implementation & control – “comprehensibility often overrides optimiality”

- “black box” error correction: use state/process tomography to identify errors for optimal/robust encoding/recovery

- what is the character of the encoding/recovery landscape
“... and these imperfections may produce considerable havoc.”
“... and these imperfections may produce considerable havoc.”

“It ain’t what you don’t know that gets you into trouble. It’s what you know for sure that just ain’t so.”

– Mark Twain

Oxford, 1907