Correction of hybrid quantum-classical information

Cédric Bény
Joint work with David Kribs and Achim Kempf

Los Angeles, November 17, 2007
The stochastic Heisenberg picture

- Consider a noisy channel $\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger$
The stochastic Heisenberg picture

- Consider a noisy channel $\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger$
- Physically, the only thing that matters are expectation values

$$\text{Tr}(\mathcal{E}(\rho) A) = \sum_i \text{Tr}(E_i \rho E_i^\dagger A)$$
The stochastic Heisenberg picture

- Consider a noisy channel $\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger$
- Physically, the only thing that matters are expectation values

$$\text{Tr}(\mathcal{E}(\rho) A) = \sum_i \text{Tr}(E_i \rho E_i^\dagger A)$$
The stochastic Heisenberg picture

- Consider a noisy channel $\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger$
- Physically, the only thing that matters are expectation values

$$\text{Tr}(\mathcal{E}(\rho)A) = \sum_i \text{Tr}(\rho E_i^\dagger A E_i)$$
Correctable observables form algebras

Algebras represent hybrid information

Example

The stochastic Heisenberg picture

- Consider a noisy channel \(\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger \)
- Physically, the only thing that matters are expectation values

\[
\text{Tr}(\mathcal{E}(\rho) A) = \sum_i \text{Tr}(\rho E_i^\dagger A E_i)
\]
Correctable observables form algebras

Algebras represent hybrid information

Example

The stochastic Heisenberg picture

- Consider a noisy channel $\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger$

- Physically, the only thing that matters are expectation values

$$\text{Tr}(\mathcal{E}(\rho)A) = \text{Tr}(\rho \sum_i E_i^\dagger A E_i)$$
The stochastic Heisenberg picture

- Consider a noisy channel $\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger$
- Physically, the only thing that matters are expectation values

$$\text{Tr}(\mathcal{E}(\rho) A) = \text{Tr}(\rho \sum_i E_i^\dagger A E_i)$$
The stochastic Heisenberg picture

- Consider a noisy channel \(\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger \)
- Physically, the only thing that matters are expectation values

\[
\text{Tr}(\mathcal{E}(\rho) A) = \text{Tr}(\rho \mathcal{E}^\dagger (A))
\]
Consider a noisy channel \(\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger \)

Physically, the only thing that matters are expectation values

\[
\text{Tr}(\mathcal{E}(\rho) A) = \text{Tr}(\rho \mathcal{E}^\dagger(A))
\]

The dual channel \(\mathcal{E}^\dagger \) evolves observables
The stochastic Heisenberg picture

- Consider a noisy channel $\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger$
- Physically, the only thing that matters are expectation values
 \[\text{Tr}(\mathcal{E}(\rho)A) = \text{Tr}(\rho \mathcal{E}^\dagger(A)) \]

- The dual channel \mathcal{E}^\dagger evolves observables
- It is CP and unital (instead of trace-preserving):
 \[\mathcal{E}^\dagger(1) = \sum_i E_i^\dagger E_i = 1 \]
Consider a noisy channel $\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger$

Physically, the only thing that matters are expectation values

$$\text{Tr}(\mathcal{E}(\rho) A) = \text{Tr}(\rho \mathcal{E}^\dagger(A))$$

The dual channel \mathcal{E}^\dagger evolves observables

It is CP and unital (instead of trace-preserving):

$$\mathcal{E}^\dagger(1) = \sum_i E_i^\dagger E_i = 1$$

Note that $$(\mathcal{F} \circ \mathcal{E})^\dagger = \mathcal{E}^\dagger \circ \mathcal{F}^\dagger$$
The stochastic Heisenberg picture

- Consider a noisy channel \(\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger \)
- Physically, the only thing that matters are expectation values
 \[
 \text{Tr}(\mathcal{E}(\rho)A) = \text{Tr}(\rho \mathcal{E}^\dagger(A))
 \]

- The dual channel \(\mathcal{E}^\dagger \) evolves observables
- It is CP and unital (instead of trace-preserving):
 \[
 \mathcal{E}^\dagger(1) = \sum_i E_i^\dagger E_i = 1
 \]

- Note that \((\mathcal{F} \circ \mathcal{E})^\dagger = \mathcal{E}^\dagger \circ \mathcal{F}^\dagger\)
- The dual channel maps future observables to past observables
Conserved propositions

- Let us characterize the observables conserved by \mathcal{E}^\dagger
Conserved propositions

- Let us characterize the observables conserved by \mathcal{E}^\dagger
- First, consider a quantum “proposition”: a projector P
Conserved propositions

- Let us characterize the observables conserved by \mathcal{E}^\dagger
- First, consider a quantum “proposition”: a projector P
- We want $\mathcal{E}^\dagger(P) = P$
Conserved propositions

- Let us characterize the observables conserved by \mathcal{E}^\dagger
- First, consider a quantum “proposition”: a projector P
- We want $\mathcal{E}^\dagger (P) = P$, hence $P^\perp \mathcal{E}^\dagger (P) P^\perp = 0$
Correctable observables form algebras

Algebras represent hybrid information

Example

Conserved propositions

- Let us characterize the observables conserved by \mathcal{E}^\dagger
- First, consider a quantum “proposition”: a projector P
- We want $\mathcal{E}^\dagger(P) = P$, hence $P^\perp \mathcal{E}^\dagger(P) P^\perp = 0$
- These are sums of positive operators: $\sum_i P^\perp E_i^\dagger P E_i P^\perp = 0$
Conserved propositions

- Let us characterize the observables conserved by \mathcal{E}^\dagger
- First, consider a quantum "proposition": a projector P
- We want $\mathcal{E}^\dagger(P) = P$, hence $P^\perp \mathcal{E}^\dagger(P) P^\perp = 0$
- These are sums of positive operators: $\sum_i P^\perp E_i^\dagger PE_i P^\perp = 0$
- Each term must be zero: $(PE_i^\dagger P^\perp)^\dagger (PE_i P^\perp) = 0$
Conserved propositions

- Let us characterize the observables conserved by \mathcal{E}^\dagger
- First, consider a quantum “proposition”: a projector P
- We want $\mathcal{E}^\dagger(P) = P$, hence $P^\perp \mathcal{E}^\dagger(P) P^\perp = 0$
- These are sums of positive operators: $\sum_i P^\perp E_i^\dagger P E_i P^\perp = 0$
- Each term must be zero: $(P E_i^\dagger P^\perp)^\dagger (P E_i P^\perp) = 0$
- But then the “square roots” must be zero: $P E_i P^\perp = 0$
Conserved propositions

- Let us characterize the observables conserved by \mathcal{E}^\dagger
- First, consider a quantum "proposition": a projector P
- We want $\mathcal{E}^\dagger(P) = P$, hence $P^\perp \mathcal{E}^\dagger(P) P^\perp = 0$
- These are sums of positive operators: $\sum_i P^\perp E_i^\dagger P E_i P^\perp = 0$
- Each term must be zero: $(PE_i^\dagger P^\perp)^\dagger (PE_i P^\perp) = 0$
- But then the "square roots" must be zero: $PE_i(1 - P) = 0$
Conserved propositions

- Let us characterize the observables conserved by E^\dagger
- First, consider a quantum “proposition”: a projector P
- We want $E^\dagger(P) = P$, hence $P^\perp E^\dagger(P) P^\perp = 0$
- These are sums of positive operators: $\sum_i P^\perp E_i^\dagger PE_i P^\perp = 0$
- Each term must be zero: $(PE_i^\dagger P^\perp)^\dagger (PE_i P^\perp) = 0$
- But then the “square roots” must be zero: $PE_i (1 - P) = 0$
- This means $PE_i = PE_i P$
Conserved propositions

- Let us characterize the observables conserved by E^\dagger
- First, consider a quantum “proposition”: a projector P
- We want $E^\dagger(P) = P$, hence $P\perp E^\dagger(P)P\perp = 0$
- These are sums of positive operators: $\sum_i P\perp E_i^\dagger PE_i P\perp = 0$
- Each term must be zero: $(PE_i^\dagger P\perp)^\dagger (PE_i P\perp) = 0$
- But then the “square roots” must be zero: $PE_i(1 - P) = 0$
- This means $PE_i = PE_i P$
- Note that $E^\dagger(P\perp) = P\perp$ too, hence $E_i P = PE_i P = PE_i$
Conserved propositions

- Let us characterize the observables conserved by \mathcal{E}^\dagger
- First, consider a quantum “proposition”: a projector P
- We want $\mathcal{E}^\dagger(P) = P$, hence $P^\perp \mathcal{E}^\dagger(P) P^\perp = 0$
- These are sums of positive operators: $\sum_i P^\perp E_i^\dagger P E_i P^\perp = 0$
- Each term must be zero: $(P E_i^\dagger P^\perp)^\dagger (P E_i P^\perp) = 0$
- But then the “square roots” must be zero: $P E_i (1 - P) = 0$
- This means $P E_i = P E_i P$
- Note that $\mathcal{E}^\dagger(P^\perp) = P^\perp$ too, hence $E_i P = P E_i P = P E_i$
- A projector P is conserved iff $[P, E_i] = 0$
Let us characterize the observables conserved by \mathcal{E}^\dagger

First, consider a quantum “proposition”: a projector P

We want $\mathcal{E}^\dagger(P) = P$, hence $P^\perp \mathcal{E}^\dagger(P) P^\perp = 0$

These are sums of positive operators: $\sum_i P^\perp E_i^\dagger P E_i P^\perp = 0$

Each term must be zero: $(P E_i^\dagger P^\perp)^\dagger (P E_i P^\perp) = 0$

But then the “square roots” must be zero: $P E_i (1 - P) = 0$

This means $P E_i = P E_i P$

Note that $\mathcal{E}^\dagger(P^\perp) = P^\perp$ too, hence $E_i P = P E_i P = P E_i$

A projector P is conserved iff $[P, E_i] = 0$

Sufficiency: $\mathcal{E}^\dagger(P) = \mathcal{E}^\dagger(1) P = 1 P = P$
Correctable observables form algebras
Algebras represent hybrid information
Example

Conserved observables

- Consider an observable \(A = \sum_k \alpha_k P_k \)
Conserved observables

- Consider an observable $A = \sum_k \alpha_k P_k$
- If $\mathcal{E}^\dagger(A) = A$, only its expectation value is conserved
Conserved observables

- Consider an observable $A = \sum_k \alpha_k P_k$
- If $\mathcal{E}^\dagger(A) = A$, only its expectation value is conserved
- The whole observable is conserved if $\mathcal{E}^\dagger(P_k) = P_k$ for all k
Correctable observables form algebras

Algebras represent hybrid information

Example

Conserved observables

- Consider an observable \(A = \sum_k \alpha_k P_k \)
- If \(\mathcal{E}^\dagger(A) = A \), only its expectation value is conserved
- The whole observable is conserved if \(\mathcal{E}^\dagger(P_k) = P_k \) for all \(k \)
- For instance this implies \(\mathcal{E}^\dagger(A^n) = A^n \)
Conserved observables

- Consider an observable $A = \sum_k \alpha_k P_k$
- If $\mathcal{E}^\dagger(A) = A$, only its expectation value is conserved
- The whole observable is conserved if $\mathcal{E}^\dagger(P_k) = P_k$ for all k
- For instance this implies $\mathcal{E}^\dagger(A^n) = A^n$
- A is conserved iff $[P_k, E_i] = 0$ iff $[A, E_i] = 0$
Conserved observables

- Consider an observable $A = \sum_k \alpha_k P_k$
- If $\mathcal{E}^\dagger(A) = A$, only its expectation value is conserved
- The whole observable is conserved if $\mathcal{E}^\dagger(P_k) = P_k$ for all k
- For instance this implies $\mathcal{E}^\dagger(A^n) = A^n$
- A is conserved iff $[P_k, E_i] = 0$ iff $[A, E_i] = 0$
- The set of all conserved observables is characterized by the \dagger-algebra

$$\mathcal{A} = \{X \mid [X, E_i] = [X^\dagger, E_i] = 0 \text{ for all } i\}$$
Conserved observables

- Consider an observable $A = \sum_k \alpha_k P_k$
- If $\mathcal{E}^\dagger(A) = A$, only its expectation value is conserved
- The whole observable is conserved if $\mathcal{E}^\dagger(P_k) = P_k$ for all k
- For instance this implies $\mathcal{E}^\dagger(A^n) = A^n$
- A is conserved iff $[P_k, E_i] = 0$ iff $[A, E_i] = 0$
- The set of all conserved observables is characterized by the †-algebra

$$\mathcal{A} = \{ X \mid [X, E_i] = [X^\dagger, E_i] = 0 \text{ for all } i \}$$

- Close in spirit to the original noiseless subsystem paper (Knill, Laflamme, Viola)
Correctable observables

- R is **correctable** if there is R such that $(R \circ E)^\dagger(P) = P$

Note: the whole algebra can be corrected with a unique channel R

Note: the same R still works for a channel with elements $F_i = \sum_j \alpha_{ij} E_j$
Correctable observables

- R is **correctable** if there is \(\mathcal{R} \) such that \((\mathcal{R} \circ \mathcal{E})^\dagger(P) = P \)
- Then \([P, R_k E_i] = 0 \)
Correctable observables form algebras

Algebras represent hybrid information

Example

Correctable observables

- R is **correctable** if there is \(\mathcal{R} \) such that \((\mathcal{R} \circ \mathcal{E})^\dagger(P) = P\)
- Then \([P, R_k E_i] = 0 \) hence \([P, E_i^\dagger E_j] = 0\)
Correctable observables

- R is **correctable** if there is \mathcal{R} such that $(\mathcal{R} \circ \mathcal{E})^\dagger(P) = P$
- Then $[P, R_k E_i] = 0$ hence $[P, E_i^\dagger E_j] = 0$ indeed

$$PE_i^\dagger E_j = \sum_k PE_i^\dagger R_k^\dagger R_k E_j$$
Correctable observables

- R is correctable if there is \(\mathcal{R} \) such that \((\mathcal{R} \circ \mathcal{E})^\dagger(P) = P\)
- Then \([P, R_k E_i] = 0\) hence \([P, E_i^\dagger E_j] = 0\) indeed

\[
PE_i^\dagger E_j = \sum_k PE_i^\dagger R_k^\dagger R_k E_j
\]
R is **correctable** if there is \mathcal{R} such that $(\mathcal{R} \circ \mathcal{E})^\dagger(P) = P$

Then $[P, R_k E_i] = 0$ hence $[P, E_i^\dagger E_j] = 0$ indeed

$$PE_i^\dagger E_j = \sum_k E_i^\dagger R_k^\dagger P R_k E_j$$
Correctable observables form algebras

Algebras represent hybrid information

Example

Correctable observables

- R is **correctable** if there is \mathcal{R} such that $(\mathcal{R} \circ \mathcal{E})^\dagger (P) = P$
- Then $[P, R_k E_i] = 0$ hence $[P, E_i^\dagger E_j] = 0$ indeed

$$PE_i^\dagger E_j = \sum_k E_i^\dagger R_k^\dagger R_k E_j P$$

Note: the whole algebra can be corrected with a unique channel R

Note: the same R still works for a channel with elements $F_i = \sum_j \alpha_{ij} E_j$
Correctable observables

- **R is correctable** if there is \mathcal{R} such that $(\mathcal{R} \circ \mathcal{E})^\dagger(P) = P$
- Then $[P, R_k E_i] = 0$ hence $[P, E_i^\dagger E_j] = 0$ indeed

$$PE_i^\dagger E_j = \sum_k E_i^\dagger R_k R_k E_j P$$
Correctable observables form algebras

Algebras represent hybrid information

Example

Correctable observables

- R is **correctable** if there is \(\mathcal{R} \) such that \((\mathcal{R} \circ \mathcal{E})^\dagger(P) = P\)
- Then \([P, R_k E_i] = 0\) hence \([P, E_i^\dagger E_j] = 0\) indeed

\[PE_i^\dagger E_j = E_i^\dagger E_j P \]
Correctable observables

- R is **correctable** if there is \(\mathcal{R} \) such that \((\mathcal{R} \circ \mathcal{E})^\dagger(P) = P \)
- Then \([P, R_k E_i] = 0\) hence \([P, E_i^\dagger E_j] = 0\) indeed

\[
PE_i^\dagger E_j = E_i^\dagger E_j P
\]

- In fact this is **sufficient** for \(\mathcal{R} \) to exist
Correctable observables form algebras

- Algebras represent hybrid information

Example

- Correctable observables
- \(R \) is correctable if there is \(R \) such that \((R \circ \mathcal{E})^+(P) = P\)
- Then \([P, R_k E_i] = 0\) hence \([P, E_i^+ E_j] = 0\) indeed
 \[
 PE_i^+ E_j = E_i^+ E_j P
 \]
- In fact this is sufficient for \(R \) to exist
- **Hence set of all correctable observables span the \(^+ \)-algebra**

\[
\mathcal{A} = \{ X \mid [X, E_i^+ E_j] = 0 \text{ for all } i, j \}
\]
Correctable observables

- **R** is correctable if there is \(\mathcal{R} \) such that \((\mathcal{R} \circ \mathcal{E})^\dagger(P) = P\)
- Then \([P, R_k E_i] = 0\) hence \([P, E_i^\dagger E_j] = 0\) indeed
 \[
 P E_i^\dagger E_j = E_i^\dagger E_j P
 \]
- In fact this is **sufficient** for \(\mathcal{R} \) to exist
- **Hence set of all correctable observables span the** \(\dagger\)-**algebra**
 \[
 \mathcal{A} = \{ X \mid [X, E_i^\dagger E_j] = 0 \text{ for all } i, j \}
 \]
- Note: the whole algebra can be corrected with a **unique channel** \(\mathcal{R} \)
Correctable observables

- R is **correctable** if there is R such that $(R \circ E)^\dagger(P) = P$
- Then $[P, R_k E_i] = 0$ hence $[P, E_i^\dagger E_j] = 0$ indeed

 $$PE_i^\dagger E_j = E_i^\dagger E_j P$$

- In fact this is **sufficient** for R to exist
- **Hence set of all correctable observables span the** \dagger-**algebra**

 $$\mathcal{A} = \{X \mid [X, E_i^\dagger E_j] = 0 \text{ for all } i, j\}$$

- Note: the whole algebra can be corrected with a **unique** channel R
- Note: the same R still works for a channel with elements $F_i = \sum_j \alpha_{ij} E_j$
- \dagger-algebras have a simple structure
Correctable observables form algebras

Algebras represent hybrid information

Example

- †-algebras have a simple structure
- They are direct-sum of full matrix algebras

\[X = \begin{pmatrix} A & B \\ C \end{pmatrix} = A \oplus B \oplus C \]
- †-algebras have a simple structure
- They are direct-sum of full matrix algebras

\[
X = \begin{pmatrix} A & B \\ B & C \end{pmatrix} = A \oplus B \oplus C
\]

- Inside bigger matrices there may be redundancy

\[
X = \begin{pmatrix} A & A \\ B & B \\ B & C \end{pmatrix} = \begin{pmatrix} A \otimes 1_2 \\ B \otimes 1_3 \\ C \end{pmatrix}
\]
- †-algebras have a simple structure
- They are direct-sum of full matrix algebras

\[X = \begin{pmatrix} A & B \\ C \end{pmatrix} = A \oplus B \oplus C \]

- Inside bigger matrices there may be redundancy

\[X = \begin{pmatrix} A \\ A \\ B \\ B \\ B \\ C \end{pmatrix} = \begin{pmatrix} A \otimes 1_2 \\ B \otimes 1_3 \\ C \end{pmatrix} \]

- The structure of the subalgebra selects subspaces and subsystems
Hybrid quantum-classical information

- Full matrix algebras represent quantum information
Correctable observables form algebras

Algebras represent hybrid information

Example:

Hybrid quantum-classical information

- Full matrix algebras represent quantum information
- Commutative algebras represent classical information
Hybrid quantum-classical information

- Full matrix algebras represent quantum information
- Commutative algebras represent classical information
- What about, say, $A = \mathcal{M}_2 \oplus \mathcal{M}_4$?
Hybrid quantum-classical information

- Full matrix algebras represent quantum information
- Commutative algebras represent classical information
- What about, say, $A = \mathcal{M}_2 \oplus \mathcal{M}_4$?
- This means that we have a *bit* and, well.. that depends on the bit
Hybrid quantum-classical information

- Full matrix algebras represent quantum information
- Commutative algebras represent classical information
- What about, say, $\mathcal{A} = \mathcal{M}_2 \oplus \mathcal{M}_4$?
- This means that we have a *bit* and, well.. that depends on the bit
- If the bit is 0 then we have also a qubit: \mathcal{M}_2
Hybrid quantum-classical information

- Full matrix algebras represent quantum information
- Commutative algebras represent classical information
- What about, say, \(A = \mathcal{M}_2 \oplus \mathcal{M}_4 \) ?
- This means that we have a bit and, well.. that depends on the bit
- If the bit is 0 then we have also a qubit: \(\mathcal{M}_2 \)
- If the bit is 1 then we have also two qubits: \(\mathcal{M}_4 \)
Hybrid quantum-classical information

- Full matrix algebras represent quantum information
- Commutative algebras represent classical information
- What about, say, $A = \mathcal{M}_2 \oplus \mathcal{M}_4$?
- This means that we have a *bit* and, well.. that depends on the bit
- If the bit is 0 then we have also a qubit: \mathcal{M}_2
- If the bit is 1 then we have also two qubits: \mathcal{M}_4
- The amount of quantum information is conditional on the classical information
Hybrid quantum-classical information

- Full matrix algebras represent quantum information
- Commutative algebras represent classical information
- What about, say, $A = \mathcal{M}_2 \oplus \mathcal{M}_4$? This means that we have a \textit{bit} and, well.. that depends on the bit
 - If the bit is 0 then we have also a qubit: \mathcal{M}_2
 - If the bit is 1 then we have also two qubits: \mathcal{M}_4
- The amount of quantum information is conditional on the classical information
- Known as hybrid information (Kuperberg) or “quantum system with superselection rules”
Correctable observables form algebras
Algebras represent hybrid information

Comparison to QEC, OQEC
Correctable observables form algebras
Algebras represent hybrid information

Example

Comparison to QEC, OQEC

Standard QEC:

\[\mathcal{A} = \mathcal{B}(\mathcal{H}_C) \]
Comparison to QEC, OQEC

Standard QEC:

\[\mathcal{A} = \mathcal{B}(\mathcal{H}_C) \]

Subsystem QEC (Operator QEC):

\[\mathcal{A} = \mathcal{M}_n \otimes \mathbf{1} \subseteq \mathcal{B}(\mathcal{H}_C) \]
Comparison to QEC, OQEC

Standard QEC:

\[\mathcal{A} = \mathcal{B}(\mathcal{H}_C) \]

Subsystem QEC (Operator QEC):

\[\mathcal{A} = \mathcal{M}_n \otimes 1 \subseteq \mathcal{B}(\mathcal{H}_C) \]

Operator Algebra QEC:

\[\mathcal{A} = \begin{pmatrix} \mathcal{M}_{n_1} \otimes 1 & 0 & \cdots & 0 \\ 0 & \mathcal{M}_{n_2} \otimes 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathcal{M}_{n_N} \otimes 1 \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H}_C) \]
Noisy teleportation

What happen if there are errors in the classical communication channel for teleportation?
Noisy teleportation

- What happen if there are errors in the classical communication channel for teleportation?
Noisy teleportation

- What happens if there are errors in the classical communication channel for teleportation?
Noisy teleportation

- What happens if there are errors in the classical communication channel for teleportation?
- \(\mathcal{E}(\rho) = \frac{1}{N} \sum_i |i\rangle\langle i| \otimes U_i \rho U_i^\dagger \)
Noisy teleportation

What happen if there are errors in the classical communication channel for teleportation?

\[\mathcal{E}(\rho) = \frac{1}{N} \sum_i |i\rangle \langle i| \otimes U_i \rho U_i^\dagger \]

\[\mathcal{E}(\rho) = \frac{1}{N} \sum_{ij} p_{ij} |i\rangle \langle i| \otimes U_j \rho U_j^\dagger \]
Correctable observables form algebras

Algebras represent hybrid information

Example

Noisy teleportation

What happens if there are errors in the classical communication channel for teleportation?

\[\mathcal{E}(\rho) = \frac{1}{N} \sum_i |i\rangle\langle i| \otimes U_i \rho U_i^\dagger \]

\[\mathcal{E}(\rho) = \frac{1}{N} \sum_{ij} p_{ij} |i\rangle\langle i| \otimes U_j \rho U_j^\dagger \]

\[E_{ij} \propto \sqrt{p_{ij}} |i\rangle \otimes U_j \]
Correctable observables form algebras

Algebras represent hybrid information

Example

Noisy teleportation

- What happen if there are errors in the classical communication channel for teleportation?

 \[\mathcal{E}(\rho) = \frac{1}{N} \sum_i |i\rangle\langle i| \otimes U_i \rho U_i^\dagger \]

 \[\mathcal{E}(\rho) = \frac{1}{N} \sum_{ij} p_{ij} |i\rangle\langle i| \otimes U_j \rho U_j^\dagger \]

 \[E_{ij} \propto \sqrt{p_{ij}} |i\rangle \otimes U_j \]

 \[E_{ij}^\dagger E_{kl} \propto \delta_{ik} \sqrt{p_{ij} p_{il}} U_j^\dagger U_l \]
Noisy teleportation

- What happens if there are errors in the classical communication channel for teleportation?
- $\mathcal{E}(\rho) = \frac{1}{N} \sum_i |i\rangle \langle i| \otimes U_i \rho U_i^\dagger$
- $\mathcal{E}(\rho) = \frac{1}{N} \sum_{ij} p_{ij} |i\rangle \langle i| \otimes U_j \rho U_j^\dagger$
- $E_{ij} \propto \sqrt{p_{ij}} |i\rangle \otimes U_j$
- $E_{ij}^\dagger E_{kl} \propto \delta_{ik} \sqrt{p_{ij} p_{il}} U_j^\dagger U_l$
- If $p_{ij} \neq 0$ and $p_{il} \neq 0$, then j and l cannot be distinguished
Correctable observables form algebras

Algebras represent hybrid information

Example

Noisy teleportation

What happen if there are errors in the classical communication channel for teleportation?

- \(E(\rho) = \frac{1}{N} \sum_i |i\rangle \langle i| \otimes U_i \rho U_i^\dagger \)
- \(E(\rho) = \frac{1}{N} \sum_{ij} p_{ij} |i\rangle \langle i| \otimes U_j \rho U_j^\dagger \)
- \(E_{ij} \propto \sqrt{p_{ij}} |i\rangle \otimes U_j \)
- \(E_{ij}^\dagger E_{kl} \propto \delta_{ik} \sqrt{p_{ij} p_{il}} U_j^\dagger U_l \)
- If \(p_{ij} \neq 0 \) and \(p_{il} \neq 0 \), then \(j \) and \(l \) cannot be distinguished
- Bob can only recover those observables invariant under \(U_j^\dagger U_l \)
Noisy teleportation

- For instance, consider a qubit: $U_i \in \{1 = \sigma_0, \sigma_x, \sigma_y, \sigma_z\}$
For instance, consider a qubit: $U_i \in \{1 = \sigma_0, \sigma_x, \sigma_y, \sigma_z\}$

Suppose that $p_{0z} = p_{zz} = 1$
Noisy teleportation

- For instance, consider a qubit: \(U_i \in \{1 = \sigma_0, \sigma_x, \sigma_y, \sigma_z\} \)
- Suppose that \(p_{0z} = p_{zz} = 1 \)
- Then the correctable \(\mathcal{A} \) must commute with \(\sigma_0 \sigma_z = \sigma_z \):

\[
\mathcal{A} = \text{Alg}(\sigma_z) = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \text{ for all } a, b \right\}
\]
For instance, consider a qubit: $U_i \in \{1 = \sigma_0, \sigma_x, \sigma_y, \sigma_z\}$

Suppose that $p_{0z} = p_{zz} = 1$

Then the correctable \mathcal{A} must commute with $\sigma_0 \sigma_z = \sigma_z$:

$$\mathcal{A} = \text{Alg}(\sigma_z) = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \text{ for all } a, b \right\}$$

Bob can only recover one classical bit, corresponding to a measurement of σ_z on Alice’s qubit
Further reading:
PRL 98, 100502
PRA 76, 042303
Correctable observables form algebras

Algebras represent hybrid information

Example

Further reading:
PRL 98, 100502
PRA 76, 042303

Thank you for your attention!